|
Electron Mobility in Silicon Under Uniaxial[110] Stress
MA Jianli, FU Zhifen, LI Yang, TANG Xudong, ZHANG Heming
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS
2017, 34 (4):
483-488.
Conduction band structure of silicon under uniaxial[110] stress is studied with two band k·p perturbation theory. Splitting energy of conduction band minima and electron effective mass as a function of stress and direction electron mobility in uniaxial stressed silicon are obtained with relax time approximate theory. Intervalley scattering, intravalley scattering, and ionized impurity scattering are considered in calculation. It is demonstrated that as uniaxial[110] stress is applied on silicon crystal, a significant anisotropy in electron mobility can be observed. Among crystal directions[001],[110], and[110], electron mobility along[110] direction under uniaxial[110] tensile stress has a profound enhancement, which increase from 1 450 cm2·Vs-1 to 2 500 cm2·Vs-1 as stress change from 0 to 2 GPa. Electron mobility enhancement is mainly due to uniaxial stress induced conduction effective mass reduction, while suppression of intervalley scattering plays a minor role.
Reference |
Related Articles |
Metrics
|
|