[1] GUTMARK E J, SCHADOW K C, YU K H. Mixing enhancement in supersonic free shear flows[J]. Annual Review of Fluid Mechanics, 1995, 27(1):375-417. [2] MARBLE F E, HENDRICKS G J, ZUKOSKI E E. Progress toward shock enhancement of supersonic combustion processes[M]//Turbulent Reactive Flows. Springer US, 1989:932-950. [3] RANJAN D, NIEDERHAUS J H, OAKLEY J G. Shock-bubble interactions:Features of divergent shock-refraction geometry observed in experiments and simulations[J].Physics of Fluids, 2008, 20(3):257-260. [4] 罗喜胜, 翟志刚, 司廷. 激波诱导下的气体界面不稳定性实验研究[J]. 力学进展, 2014, 44(1):260-290. [5] CHEN F, ZHANG M P, XU S L. Numerical studies of moving shock interacting with consecutive helium bubbles[J]. Chinese Journal of Computational Physics, 2004, 21(5):443-448. [6] HE H Q, ZHAI Z G, SI T, LUO X S. Numerical investigation on eccentricity effect in Richtmyer-Meshkov instability induced by converging shock wave[J].Chinese Journal of Computational Physics,2016, 33(1):66-74. [7] 王革, 关奔. 激波作用下R22气泡射流现象研究[J]. 力学学报, 2013, 45(5):707-715. [8] HAEHN N, RANJAN D, WEBER C. Reacting shock bubble interaction[J]. Combustion & Flame,2012, 159(3):1339-1350. [9] TON V T, KARAGOZIAN A R, MARBLE F E. Numerical simulations of high-speed chemically reacting flow[J]. Theoretical and Computational Fluid Dynamics, 1994, 6(2):161-179. [10] BILLET G, GIOVANGIGLI V, GASSOWSKI G. Impact of volume viscosity on a shock-hydrogen-bubble interaction[J]. Combustion Theory and Modelling, 2008, 12(2):221-248. [11] DIEGELMANN F, TRITSCHLER V, HICKEL S. On the pressure dependence of ignition and mixing in two-dimensional reactive shock-bubble interaction[J]. Combustion & Flame, 2016, 163(1):414-426. [12] DIEGELMANN F, HICKEL S,ADAMS N A. Shock Mach number influence on reaction wave types and mixing in reactive shock-bubble interaction[J]. Combustion & Flame, 2016,174:085-099. [13] 刘瑜, 刘君, 唐玲艳. 一种求解化学非平衡流动的新型解耦算法[J]. 力学学报, 2015, 47(1):82-94. [14] 熊姹, 严传俊, 邱华. 不同化学反应机理对爆震波模拟的影响[J]. 燃烧科学与技术, 2008, 14(4):355-360. [15] 董刚, 黄鹰, 陈义良. 不同化学反应机理对甲烷射流湍流扩散火焰计算结果影响的研究[J]. 燃料化学学报, 2000, 28(1):49-54. [16] 王革, 谢昌坦, 张斌. 高阶WENO格式数值粘性对模拟R-T不稳定性的影响[J]. 哈尔滨工程大学学报, 2011, 32(12):1563-1568. [17] XIAO L Z. Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows[J]. Journal of Computational Physics, 1996, 128(1):19-31. [18] BUSSING T R, MURMAN E M. Finite-volume method for the calculation of compressible chemically reacting flows[J]. AIAA Journal, 1988, 26(9):1070-1078. [19] EVANS J S, SCHEXNAYDER C J. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames[J]. AIAA Journal, 1980, 18(2):188-193. [20] CLUTTER J, MIKOLAITIS D, WEI S. Effect of reaction mechanism in shock-induced combustion simulations[C]. AIAA Aerospace Sciences Meeting and Exhibit, 2013. [21] O'CONAIRE M, CURRAN H J, SIMMIE J M. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics, 2004, 36(11):603-622. [22] KONNOV AA. Remaining uncertainties in the kinetic mechanism of hydrogen combustion[J]. Combustion & Flame, 2008, 152(4):507-528. [23] KARKACH S P, OSHEROV V I. An initial analysis of the transition states on the lowest triplet H2O2 potential surface[J]. Journal of Chemical Physics, 1999, 110(24):11918-11927. [24] BAI J S, ZOU L Y, WANG T. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders[J]. Physical Review E, 2010, 82(2):056318-056318. [25] GIORDANO J, BURTSCHELL Y. Richtmyer-Meshkov instability induced by shock-bubble interaction:Numerical and analytical studies with experimental validation[J]. Physics of Fluids, 2006, 18(3):036102-036102. |