[1] WALSH J M, SHREFFLER R G, WILLING F J. Limiting conditions for jet formation in high velocity collisions[J]. J Appl Phys, 1953, 24:349-359. [2] ASAY J R, BERTHOLF L D. Material ejection from shock-loaded free surfaces of aluminum and lead[R].Sandia Report, 1976, SAND76-0542. [3] SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals[J]. J Appl Phys, 2002, 92(10):5830-5836. [4] VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces[J]. J Appl Phys, 2005, 98(11):113508. [5] ZELLNER M B, GROVER M, HAMMERBERG J E, et al. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces[J]. J Appl Phys, 2007, 102(1):013522. [6] ZELLNER M B, MCNEIL W V, HAMMERBERG J E, et al. Probing the underlying physics of ejecta production from shocked Sn samples[J]. J Appl Phys, 2008, 103(12):123502. [7] BUTTLER W T, ZELLNER M B, OLSON R T, et al. Dynamic comparisons of piezoelectric ejecta diagnostics[J]. J Appl Phys, 2007, 101:063547. [8] CHEN Y T, HU H B, TANG T G, et al. Experimental study of ejecta from shock melted lead[J]. J Appl Phys, 2012, 111(5):053509. [9] MONFARED S K, ORO D M, GROVER M, et al. Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection[J]. J Appl Phys, 2014, 116(6):063504. [10] HAN C S, JING F Q, DING J, et al. Study on the phenomena of the mass ejection from the free surface of aluminum at different dynamic loading rates[J]. Chinese J High Press Phys, 1989, 3(2):97-106. [11] WANG P, HONG T. Parallel computation of three-dimensional smoothed particle hydrodynamics[J]. Chinese J Comput Phys, 2006, 23(4):431-435. [12] CHEN J, JING F Q, ZHANG J L, et al. Dynamics simulation of ejection of metal under a shock wave[J]. J Phys:Condens Matter, 2002, 14:10833-10837. [13] LIU C, FENG Q J, QIN Q S, et al. Maximal penetration depth of micro-jet from void under shock loading[J]. Chinese J Comput Phys, 2014, 31(1):44-50. [14] WANG P, SHAO J L, QIN C S. Effect of loading-wave-front width on micro-jet from aluminum surface[J]. Acta Phys Sin, 2009, 58(2):1064-1070. [15] ZHAO X W, LI X Z, WANG X J, et al. Effects of surface groove micro-structure on ejection from shocked metal surface[J]. Acta Physica Sinica, 2015, 64(12):124701. [16] SHAO J L, WANG P, HE A M, et al. Microscopic simulation on shock-induced micro-jet ejection from metal Al surface[J]. Acta Phys Sin, 2012, 61(18):184701. [17] SHAO J L, WANG P, HE A M. Microjetting from a grooved Al surface under supported and unsupported shocks[J]. J Appl Phys, 2014, 116:073501. [18] HE A M, WANG P, SHAO J L. Molecular dynamics simulations of ejecta size distributions for shock-loaded Cu with a wedged surface groove[J]. Comput Mater Sci, 2015, 98:271. [19] HE A M, WANG P, SHAO J L. Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading[J]. Chinese Phys B, 2014, 23:000001. [20] CHERNE F J, HAMMERBERG J E, ANDREWS M J, et al. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum[J]. J Appl Phys, 2015, 118:185901. [21] HE A M, WANG P, SHAO J L. Statistically heterogeneous size distribution of ejecta from shock-loaded Cu with a wedged surface groove[J]. Modelling Simul Mater Sci Eng, 2016, 24:025002. [22] HAN C S. A semi-empirical equation for estimating the micro-jet ejection from shocked free-surface[J]. Chinese J High Press Phys, 1989, 3:234-240. [23] MEYER K A, BLEWETT P J. Numerical investigation of the stability of a shock accelerated interface between two fluids[J]. Phys Fluids, 1972, 15:753. [24] FRACHET V, ELIAS P, MARTINEAU J. Matter ejection from shocked material:A physical model to understand the effects of free surface defects[C]. AIP Conf Proc, 1988, s235. [25] GEORGIEVSKAYA A, RAEVSKY V A. Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids uner a shock wave effect[C]//AIP Conf Proc, 2012, 1426:1007-1010. [26] BUTTLER W T, ORO D M, PRESTON D L, et al. Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum[J]. J Fluid Mech, 2012, 703:60. [27] DIMONTE G, TERRONES G, CHERNE F J, et al. Ejecta source model based the nonlinear Richtmyer-Meshkov instability[J]. J Appl Phys, 2013, 113(2):024905. [28] HARRISON A K. Survey of ejecta source modeling in FLAG[R]. Los Alamos National Laboratory, 2015, LA-UR-07-6522. [29] DIMONTE G, TERRONES G, CHERNE F J, et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities[J]. Phys Rev Lett, 2011, 107(26):264502. [30] LIU J, WANG Y J, FENG Q J, et al. Simulation study on effects of material properties of the bulging flyers driven by colliding detonation waves[J]. Chinese J High Press Phys, 2015, 29:63-68. [31] LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion[J]. Acta Phys Sin, 2014, 63:155201. [32] LI M S, CHEN D Q. A constitutive model for materials under high-temperature and pressure[J]. Chinese J High Press Phys, 2001, 15:24-31. [33] MIKAELIAN K O. Analytic approach to nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J]. Phys Rev Lett,1998, 80(3):508. [34] PIRIZ A R, CELA J J, TAHIR N A, et al. Richtmyer-Meshkov instability in elastic-plastic media[J]. Phys Rev E, 2008, 78(5):056401. [35] JENSEN B J, CHERNE F J, PRIME M B, et al. Jet formation in cerium metal to examine material strength[J]. J Appl Phys, 2015, 118(19):195903. [36] MIKAELIAN K O. Shock-induced interface instability in viscous fluids and metals[J]. Phys Rev B, 2013, 87(3):031003. [37] RICHTMYER R D. Taylor instability in shock asscceleration of compressible fluids[J]. Commun Pure Appl Math, 1960, 13:297-319. [38] DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability[J]. Phys Fluids, 2010, 22(1):014104. |