[1] LANDAU L D, LIFSCHITZ E M. Quantum mechanics:Non-relativistic theory[M]. 3rd ed. Oxford:Pergamon Press, 1977. [2] BORN M, OPPEMJEO,ER R. Zur quantentheorie der molekeln[J]. Annalen der Physik, 1927, 389(20):457-484. [3] COMBES J M, DUCLOS P, SEILER R. The Born-Oppenheimer approximation[M]//Rigorous Atomic and Molecular Physics. New York:Plenum Press, 1981:185-213. [4] HAGEDORN G A. High order corrections to the time-independent Born-Oppenheimer approximation I:Smooth potentials[J]. Annales de l'IHP Physique théorique, 1987, 47:1-16. [5] HAGEDORN G A, JOYE A. A time-dependent Born-Oppenheimer approximation with exponentially small error estimates[J]. Communications in Mathematical Physics, 2001, 223(3):583-626. [6] KLEIN M, MARTINEZ A, SEILER R, WANG X P. On the Born-Oppenheimer expansion for polyatomic molecules[J]. Communications in Mathematical Physics, 1992, 143(3):607-639. [7] SPOHN H, Teufel S. Adiabatic decoupling and time-dependent Born-Oppenheimer theory[J]. Communications in Mathematical Physics, 2001, 224(1):113-132. [8] BITLER L J. Chemical reaction dynamics beyond the Born-Oppenheimer approximation[J]. Annual Review of Physical Chemistry, 1998, 49(1):125-171. [9] BAER M, ENGLMAN R. A study of the diabatic electronic representation within the Born-Oppenheimer approximation[J]. Molecular Physics, 1992, 75(2):293-303. [10] WORTH G A, CEDERBAUM L S. Beyond Born-Oppenheimer:Molecular dynamics through a conical intersection[J]. Annu Rev Phys Chem, 2004, 55:127-158. [11] TULLY J C, PRESTON R K. Trajectory surface hopping approach to nonadiabatic molecular collisions:The reaction of h+ with d2[J]. The Journal of Chemical Physics, 1971, 55(2):562-572. [12] TULLY J C. Molecular dynamics with electronic transitions[J]. The Journal of Chemical Physics, 1990, 93(2):1061-1071. [13] VORONIN A I, MARQUES J M C, VARANDAS A J C. Trajectory surface hopping study of the li+ li2(x1σg+) dissociation reaction[J]. The Journal of Physical Chemistry A, 1998, 102(30):6057-6062. [14] SHOLL D S, TULLY J C. A generalized surface hopping method[J]. The Journal of Chemical Physics, 1998, 109(18):7702-7710. [15] DRUKKER K. Basics of surface hopping in mixed quantum/classical simulations[J]. Journal of Computational Physics, 1999, 153(2):225-272. [16] HORENKO I, SALZMANN C, SCHMIDT B,SCHVTTE C. Quantum-classical Liouville approach to molecular dynamics:Surface hopping Gaussian phase-space packets[J]. The Journal of Chemical Physics, 2002, 117(24):11075-11088. [17] LASSER C, TEUFEL S. Propagation through conical crossings:An asymptotic semigroup[J]. Communications on Pure and Applied Mathematics, 2005, 58(9):1188-1230. [18] KAMMERER C F, LASSER C. Wigner measures and codimension two crossings[J]. Math Phys, 2002. [19] LASSER C, SWART T, TEUFUL S, et al. Construction and validation of a rigorous surface hopping algorithm for conical crossings[J]. Communications in Mathematical Sciences, 2007, 5(4):789-814. [20] KUBE S, LASSER C, WEBER M. Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics[J]. Journal of Computational Physics, 2009, 228(6):1947-1962. [21] JIN S, QI P, ZHANG Z W. An Eulerian surface hopping method for the Schrödinger equation with conical crossings[J]. Multiscale Modeling & Simulation, 2011, 9(1):258-281. [22] JIN S, WEN X. Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials[J]. Communications in Mathematical Sciences, 2005, 3(3):285-315. [23] JIN S, WEN X. Computation of transmissions and reflections in geometrical optics via the reduced Liouville equation[J]. Wave Motion, 2006, 43(8):667-688. [24] JIN S, NOVAK K A. A semiclassical transport model for two-dimensional thin quantum barriers[J]. Journal of Computational Physics, 2007, 226(2):1623-1644. [25] JIN S, LIAO X M. A Hamiltonian-preserving scheme for high frequency elastic waves in heterogeneous media[J]. Journal of Hyperbolic Differential Equations, 2006, 3(04):741-777. [26] NETO A C, GUINEA F, PERES N M, NOVOSELOV K S, GEIM A K. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109. [27] SARMA S D, ADAM S, HWANG E H, ROSSI E. Electronic transport in two-dimensional graphene[J]. Reviews of Modern Physics, 2011, 83(2):407. [28] KAMMERER C F, MÉHATS F. A kinetic model for the transport of electrons in a graphene layer[J]. Journal of Computational Physics, 2016, 327:450-483. [29] HAGEDORN G A. Molecular propagation through electron energy level crossings[J]. American Mathematical Soc, 1994, 536. [30] WIGNER E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5):749. [31] GÉRARD P, MARKOWICH P A, MAUSER N J, POUPAUD F. Homogenization limits and Wigner transforms[J]. Communications on Pure and Applied Mathematics, 1997, 50(4):323-379. [32] PAUL T, LIONS P L. Sur les mesures de Wigner[J]. Revista Matemática Iberoamericana, 1993, 9(3):553-618. [33] LANDAU L D. Zur theorie der energieubertragung, Ⅱ[J]. Physics of the Soviet Union, 1932, 2(46):46-51. [34] ZENER C. Non-adiabatic crossing of energy levels[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, London:The Royal Society, 1932, 137:696-702. [35] LEVEQUE R J. Finite volume methods for hyperbolic problems[M]. Cambridge:Cambridge University Press, 2002. [36] JIN S, WEN X. A Hamiltonian-preserving scheme for the Liouville equation of geometrical optics with partial transmissions and reflections[J]. SIAM Journal on Numerical Analysis, 2006, 44(5):1801-1828. [37] JIN S, YIN D S. Computational high frequency waves through curved interfaces via the Loiuville equation and geometric theory of diffraction[J]. Journal of Computational Physics, 2008, 227:6106-6139. [38] KAMMERER C F, LASSER C. Single switch surface hopping for molecular dynamics with transitions[J]. The Journal of Chemical Physics, 2008, 128(14):144102. [39] THIEL S, KLÜNER T, FREUND H J. Interference-effects in the laser-induced desorption of small molecules from surfaces:A model study[J]. Chemical Physics, 1998, 236(1):263-276. [40] BAO W, JIN S, MARKOWICH P A. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime[J]. Journal of Computational Physics, 2002, 175(2):487-524. |