[1] MORSS L R, EDELSTEIN N M, FUGER J. The Chemistry of the actinide and transactinide elements[M]. 4th ed. Springer, 2011, 7:813-1264. [2] HECKER S S, STAN M. Properties of plutonium and its alloys for use as fast reactor fuels[J]. J Nucl Mater, 2008, 383:112-118. [3] BOBKOV V P, FOKIN L R, PETROV V V, et al. Thermophysical properties of materials for nuclear engineering:A tutorial and collection of data[M]. International Atomic Energy Agency, Vienna, 2008:18-21. [4] RUDIN S P. Traits of bulk Pu phases in Pb-Pu superlattice phases from first principles[J]. Phys Rev B, 2007, 76:195424. [5] HECKER S S. The magic of plutonium 5f electrons and phase instability[J]. Metall Mater Transations, 2004, 35A:2207. [6] COOPER N G. Challenges in plutonium science[R]. LA-UR-00-4100, Los Alamos Science 2000, 26:128-151. [7] PÉNICAUD M. Calculated structural stabilities of U, Np, Pu and Am:New high-pressure phases for Am and Pu[J]. J Phys Condens Matter, 2002, 14(13):3575-3585. [8] HAN Yawei, QIANG Hongfu. An improved SPH method with physical viscosity and application in dam-break problem[J]. Chinese Journal of Computational Physics, 2012,29(5):693-699. [9] YU Ming, LIU Fusheng. Stability of normal shock waves in viscous materials[J]. Chinese Journal of Computational Physics, 2008,25(5):543-548. [10] LEI Timan, MENG Xuhui, GUO Zhaoli. Lattice Boltzmann study on influence of chemical reaction on mixing of miscible fluids with viscous instability in porous media[J]. Chinese Journal of Computational Physics, 2016, 33(4):399-409. [11] LI Xindong, ZHAO Yingkui, OUYANG Biyao, et al. Numerical investigation of bulk viscosity effect on two-dimensional toroidal shock wave focusing[J]. Chinese Journal of Computational Physics, 2017, 34(4):662-668. [12] WITTENBERG L J, OFTE D, ROHR W G. Liquid plutonium:A review of its physical properties[J]. Nucl Appl, 1967, 3(9):550-555. [13] SHELDON R I, RINEHART G H, LASHLEY J C, et al. The optical properties of liquid plutonium at 632.8 nm[J]. J Nucl Mater, 2003, 312:207. [14] CHERNE F J, BASKES M I, HOLIAN B L. Predicted transport properties of liquid plutonium[J]. Phys Rev B, 2003, 67:092104. [15] KRESS J D, COHEN J S, KILCREASE D P, et al. Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium[J]. Phys Rev E, 2011, 83:026404. [16] ALLEN M P, TILDESLEY D J. Computer simulation of liquids[M]. New York:Oxford University Press, 1987. [17] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77:3865. [18] KRESSE G, FURTHMUULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54:11169. [19] BLOCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50:17953. [20] CLEROUIN J. The viscosity of dense hydrogen:From liquid to plasma behavior[J]. J Phys Condens Matter, 2002, 14:9089. [21] DANEL J F, KAZANDJIAN L, Z'ERAH G. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics[J]. Phys Rev E, 2012, 85:066701. [22] LI Zhi-Guo, ZHANG Wei, FU Zhi-Jian, et al. Benchmarking the diffusion and viscosity of H-He mixtures in warm dense matter regime by quantum molecular dynamics simulations[J]. Physics of Plasmas, 2017, 24:052903. [23] MEYER E R, KRESS J D, COLLINS L A, et al. Effect of correlation on viscosity and diffusion in molecular-dynamics simulations[J]. Phys Rev E, 2014, 90:043101. |