[1] LOU Q, ZANG C Q, WANG H Y, et al. Interfacial dynamics of immiscible gas-liquid two-phase flow for CO2 in microchannel:Lattice Boltzmann method[J]. Chinese Journal of Computational Physics, 2019,36(2):153-164. [2] SUN J C, DU P, LI P S, et al. Natural convection heat transfer in a porous medium with partially thermally active walls:Lattice Boltzmann method[J]. Chinese Journal of Computational Physics, 2017, 34(5):583-592. [3] AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42(1):439-472. [4] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1):329-364. [5] ZHOU T, LI X M, LIU F. MRT-LBM analysis of acoustic streaming in standing waves between two-dimensional flat plates[J]. Chinese Journal of Computational Physics, 2018,35(1):39-46. [6] WANG H M, ZHAO H B, ZHENG C G. Two-way coupling lattice Boltzmann model for gas-particle turbulent flows[J]. Chinese Journal of Computational Physics,2013,30(1):19-26. [7] D'HUMIERES D, GINZBURG I, KRAFCZYK M, et al. Multiple-relaxation-time lattice Boltzmann models in three dimensions[J]. Philosophical Transactions of the Royal Society A, 2002, 360(1792):437-451. [8] DU R, SHI B C. Incompressible MRT lattice Boltzmann model with eight velocities in 2D space[J]. International Journal of Modern Physics C, 2009, 20(7):1023-1037. [9] ZHANG W H, SHI B C, WANG Y H. 14-velocity and 18-velocity multiple-relaxation-timelattice Boltzmann models for three-dimensional incompressible flows[J]. Computers and Mathematics with Applications, 2015,69(9):997-1019. [10] CHAI Z H, ZHAO T S. Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor[J]. Physical Review E, 2012, 86(1):016705. [11] WANG L P, AYALA O, GAO H, et al. Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach[J]. Computers and Mathematics with Applications, 2014, 67(2):363-380. [12] GAO H, LI H, WANG L P. Lattice Boltzmann simulation of turbulent flow laden with finite-size particles[J]. Computers and Mathematics with Applications, 2013, 65(2):194-210. [13] MIN H D, PENG C, GUO Z L, WANG L P. An inverse design analysis of mesoscopic implementation of non-uniform forcing in MRT lattice Boltzmann models[J]. Computers and Mathematics with Applications, 2016, 78(4):1095-1114. [14] DU R, LIU W W. A new multiple-relaxation-time lattice Boltzmann method for natural convection[J]. Journal of Scientific Computing, 2013, 56(1):122-130. [15] GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4):366-374. [16] WHITE F M. Viscous fluid flow[M]. Boston:McGraw-Hill, 1991. [17] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2009:88-91. [18] O'BRIEN V. Pulsatile fully developed flow in rectangular channels[J]. Journal of the Franklin Institute, 1975, 300(3):225-230. [19] 郭照立, 郑楚光, 李青, 王能超. 流体动力学的格子Boltzmann方法[M]. 武汉:湖北科学技术出版社, 2002:10-12. [20] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method:Dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6):6546-6562. [21] YONG W A, ZHAO W F, LUO L S. Theory of the lattice Boltzmann method:Derivation of macroscopic equations via the Maxwell iteration[J]. Physical Review E, 2016,93(3):033310. |