[1] LI X, WU C S, ZOU S Y, et al. 2D-simulation design of an ignition hohlraum[J]. Chinese Journal of Computational Physics, 2013, 30(3):42-49. [2] LINDL J D. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11):3933-4024. [3] LINDL J D, AMENDT P, BERGER R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2):339-491. [4] CLARK D S, MARINAK M M, WEBER C R, et al. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign[J]. Physics of Plasmas, 2015, 22:022703. [5] CLARK D S, WEBER C R, MILOVICH J L, et al. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility[J]. Physics of Plasmas, 2016, 23:056302. [6] CLARK D S, WEBER C R, MILOVICH J L, et al. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions[J]. Physics of Plasmas, 2019, 26:050601. [7] TAYLOR G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes[J]. Proc Roy Soc, 1950, 201:192. [8] CLARK D S, HINKEL D E, EDER D C, et al. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20:056318. [9] REGAN S P, EPSTEIN R, HAMMEL B A, et al. Hot-spot mix in ignition-scale inertial confinement fusion targets[J]. Physical Review Letters, 2013, 111:045001. [10] MA T, PATEL P K, IZUMI N, et al. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions[J]. Physical Review Letters, 2013, 111:085004. [11] WEBER C R, CASEY D T, CLARK D S, et al. Improving ICF implosion performance with alternative capsule supports[J]. Physics of Plasmas, 2017, 24:056302. [12] GU J F, DAI Z S, ZOU S Y, et al. New tuning method of the low-mode asymmetry for ignition capsule implosions[J]. Phys Plasmas, 2015, 22:122704. [13] GU J F, DAI Z S, SONG P, et al. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive[J]. Phys Plasmas, 2016, 23:082703. [14] GU J F, GE F J, ZOU S Y, et al. Investigation of the yield degradation of the first shaped-pulse implosion experiments on the SG-Ⅲ laser facility[J]. Phys Plasmas, 2018, 25:122706. [15] GU J F, DAIZ S, FAN Z F, et al. A new metric of the low-mode asymmetry for ignition target designs[J]. Phys Plasmas, 2014, 21:012704. [16] WANG L F, YE W H, WU J F, et al. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions[J]. Phys Plasmas, 2016, 23:052713. [17] WANG L F, YE W H, WU J F, et al. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions[J]. Phys Plasmas, 2016, 23:122702. [18] WANG L F, WU J F, YE W H, et al. Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces[J]. Phys Plasmas, 2013, 20:042708. [19] YE W H, ZHANG W Y, HE X T. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number[J]. Physical Review E, 2002, 65:057401. [20] GU J F, DAI Z S, FAN Z F, et al. A new metric of the low-mode asymmetry for ignition target designs[J]. Physics of Plasmas, 2014, 21:012704. [21] YU C X, FAN Z F, LIU J, et al. Modeling of shell-mixing into central hotspot in inertial confinement fusion implosion[J]. Chinese Journal of Computational Physics, 2017, 34(4):379-386. [22] GU J F, DAI Z S, YE W H, et al. Simulations of high-adiabat ICF capsule implosion[J]. Chinese Journal of Computational Physics, 2015, 32(6):662-668. [23] GU J F, DAI Z S, GU P J, et al. Simulations of mode-mode coupling between low-mode drive asymmetry and outer surface roughness of ignition capsule implosion[J]. Chinese Journal of Computational Physics, 2016, 33(6):645-651. |