1 |
QUAN G Z , ZHANG Y Q , ZHANG P , et al. Correspondence between low-energy twin boundary density and thermal-plastic deformation parameters in nickel-based superalloy[J]. Transactions of Nonferrous Meals Society of China, 2021, 31 (2): 438- 455.
DOI
|
2 |
李忠群, 石晓芳, 王志康, 等. 航空高温合金材料切削加工研究现状与展望[J]. 制造技术与机床, 2018, 67 (12): 55- 60.
|
3 |
杨哲, 李桂, 郑博龙. 镍及镍合金的应用及展望[J]. 有色金属加工, 2021, 50 (3): 7- 11.
DOI
|
4 |
张健, 王莉, 王栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55 (9): 1077- 1094.
|
5 |
丁军, 汪健, 黄霞, 等. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观形变机理及力学性能[J]. 材料导报B, 2018, 32 (9): 3171- 3180.
|
6 |
LIANG H , LI M S . Molecular dynamics study of mechanical properties of single crystal aluminum with voids and vacancies[J]. Chinese Journal of Computational Physics, 2019, 36 (2): 211- 218.
|
7 |
LIU J L , FAN X F , GU C Z , et al. Effect of voids on nanocrystalline gold ultrathin film[J]. Computional Materials Science, 2021, 189, 110255.
DOI
|
8 |
DONG C Y , LU X F , YANG P F , et al. Effect of crystallographic orientation, temperature and void on tensile mechanical properties of Ni-Co single crystal nanopillars[J]. Journal of Alloys and Compounnds, 2021, 870, 159476.
DOI
|
9 |
XU Z C , BRITTON B , GUO Y . Casting voids in nickel superalloy and the mechanical behviour under room temperature tensile deformation[J]. Materials Science & Engineering A, 2021, 806, 140800.
|
10 |
SHANG J , YANG F , LI C , et al. Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: A molecular dynamics simulation[J]. Computational Materials Science, 2018, 148, 200- 206.
DOI
|
11 |
李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56 (5): 776- 784.
|
12 |
A H B , YANG Z B , HU R , et al. Molecular dynamics simulations of capillary dynamics at the nanoscale[J]. Chinese Journal of Computational Physics, 2021, 38 (5): 603- 611.
|
13 |
ZHANG H Y , YIN X C . Molecular dynamics study on growth mechanism of pure metals solid-liquid interface during solidification[J]. Chinese Journal of Computational Physics, 2019, 36 (1): 80- 88.
|
14 |
HOOVER W G . Canonical dynamics—Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31 (2): 1695- 1697.
|
15 |
PARRINELLO M , RAHMAN A . Polymorphic transitions in single crystals: A new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52 (12): 7182- 7190.
DOI
|
16 |
吴玉荣. 稀土镁合金的热力学及固溶特性的理论模拟[D]. 长沙: 湖南大学, 2007.
|
17 |
YANG X Y , HU W Y , ZHANG X M . Atomistic simulation for the-phase volume fraction dependence of the interfacial behavior of Ni-base superalloy[J]. Applied Surface Science, 2013, 264 (1): 563- 569.
|
18 |
PARK H S , ZIMMERMAN J A . Modeling inelasticity and failure in gold nanowires[J]. Physical Review B, 2005, 72 (5): 054106.
|
19 |
朱旭, 江五贵, 李源才, 等. Ni/Ni3Al拉伸力学性能的分子动力学模拟[J]. 稀有金属材料与工程, 2021, 50 (4): 1254- 1262.
|
20 |
WANG Y J , WANG C Y . First-priciples calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers[J]. Chinese Physics B, 2009, 18 (10): 4339- 4348.
|
21 |
HUANG D , ZHANG Q , QIAO P Z . Molecular dynamics evaluation of strain rate and size effects on mechanical properties of FCC nickel nanowires[J]. Computational Materials Science, 2011, 50 (5): 903- 910.
|
22 |
KOH S J A , LEE H P . Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires[J]. Nanotechnology, 2006, 17 (14): 3451- 3467.
|
23 |
刘宏西, 周剑秋. 多晶镍纳米线拉伸变形过程尺寸效应的分子动力学模拟[J]. 南京工业大学学报(自然科学版), 2016, 38 (3): 8- 12.
|
24 |
王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究[J]. 物理学报, 2019, 68 (24): 246102.
|
25 |
裴海蛟, 郭巧能, 杨仕娥, 等. 采用分子动力学模拟浇铸三层膜铜铝铜循环载荷下的孔洞演化[J]. 中国有色金属学报, 2021, 31 (9): 2475- 2489.
|