计算物理 ›› 2022, Vol. 39 ›› Issue (6): 687-698.DOI: 10.19596/j.cnki.1001-246x.8520

• 研究论文 • 上一篇    下一篇

基于物理信息神经网络的内部声场正反问题数值计算

吴国正1(), 王发杰1,2,*(), 程隋福1, 张成鑫1   

  1. 1. 青岛大学机电工程学院, 山东 青岛 266071
    2. 青岛大学多功能材料与结构力学研究院, 山东 青岛 266071
  • 收稿日期:2022-02-25 出版日期:2022-11-25 发布日期:2023-04-01
  • 通讯作者: 王发杰
  • 作者简介:

    吴国正, 男, 硕士生, 研究方向为计算物理, E-mail:

Numerical Simulation of Forward and Inverse Problems of Internal Sound Field Based on Physics-informed Neural Network

Guozheng WU1(), Fajie WANG1,2,*(), Suifu CHENG1, Chengxin ZHANG1   

  1. 1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Multifunctional Materials and Structural Mechanics, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2022-02-25 Online:2022-11-25 Published:2023-04-01
  • Contact: Fajie WANG

摘要:

针对频域内部声场正反问题的数值模拟, 建立基于物理信息的神经网络架构。与基于数据驱动的神经网络不同, 将声学问题的Helmholtz方程及其对应的边界条件引入神经网络, 所建立的神经网络算法不仅能够反映训练数据样本的分布规律, 而且也遵循由偏微分方程描述的物理定律。考虑到频域声学问题中含有复数部分, 建立两种网络架构, 并进行验证和比较分析。该方法无需网格划分和数值积分等繁琐的数值计算过程, 可自由地处理不规则区域和非均匀分布情形。数值实验考察二维和三维复杂几何结构的声学正问题及反问题, 结果表明所建立的物理信息神经网络算法具有较高的精确度、收敛性和鲁棒性。

关键词: 物理信息神经网络, 声学问题, Helmholtz方程, 正问题, 反问题

Abstract:

A physics-informed neural network (PINN) is proposed for numerical simulation of forward and inverse problems associated with internal sound field in frequency domain. Unlike data-driven neural network, Helmholtz equation of a acoustic problem and corresponding boundary conditions are embedded in the neural network. The developed neural network reflects the distribution law of training data samples, and follows the physical law described by partial differential equations as well. For frequency acoustic problem with complex numbers, two types of networks are established. Verification and comparison are performed. Tedious numerical calculation processes such as meshing and numerical integration are not needed, and irregular domain and non-uniformly distributed nodes are freely addressed. Numerical examples, including the forward and inverse problems in two-dimensional and three-dimensional complex geometric structures, are provided to investigate effectiveness of the method. It shows that the PINN has good accuracy, convergence and robustness.

Key words: physics-informed neural network, acoustic problems, Helmholtz equation, forward problems, inverse problems