计算物理 ›› 2023, Vol. 40 ›› Issue (3): 291-300.DOI: 10.19596/j.cnki.1001-246x.8565

• • 上一篇    下一篇

EAST通行高能粒子激发的非共振鱼骨模不稳定性模拟

徐敬坤1(), 汪卫华2   

  1. 1. 安徽大学计算机科学与技术学院, 安徽 合肥 230601
    2. 安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
  • 收稿日期:2022-05-23 出版日期:2023-05-25 发布日期:2023-07-22
  • 作者简介:

    徐敬坤(1998—),男,硕士研究生,研究方向为计算机模拟和高能粒子激发鱼骨模不稳定性研究,E-mail:

  • 基金资助:
    国家自然科学基金(K110132077); 国家自然科学基金(K110532001); 国家重点研发计划(2018YFE0309100); 国家重点研发计划(2017YFE0300603); 国家重点研发计划(2018YFE0310400); 安徽省自然科学基金(1908085MA26); 安徽省自然科学基金(2008085QA37)

Hybrid Simulation of Non-resonant Fishbone Instabilities Excited by Passing Energetic Particles in EAST Tokamak

Jingkun XU1(), Weihua WANG2   

  1. 1. School of Computer Science and Engineering, Anhui University, Hefei, Anhui 230601, China
    2. Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
  • Received:2022-05-23 Online:2023-05-25 Published:2023-07-22

摘要:

用磁流体动理学混合模拟程序M3D-K研究反剪切安全因子剖面下的非共振鱼骨模不稳定性。非共振鱼骨模指的是qmin略大于1的反剪切安全因子剖面下高能粒子激发的鱼骨模。分析能量共振关系,得到不同抛射角高能粒子激发非共振鱼骨模的物理机制。为了确定非共振鱼骨模稳定的参数阈值和鱼骨模不稳定性的变化趋势,在抛射角0.6时扫描非共振鱼骨模的参数,如注入能量E、高能粒子比压Phot/Ptotal等,分析非线性过程中高能粒子的慢化分布、模结构的演化和鱼骨模扫频。抛射角在0.6、0.7和1.0时非线性的慢化分布变平趋势和实验中高能粒子变化一致,抛射角在0.6时非线性模结构由非共振鱼骨模模结构向其他高频模模结构演化,非线性过程的鱼骨模出现向上扫频符合经典鱼骨模的扫频。

关键词: 鱼骨模不稳定性, 反剪切安全因子剖面, 通行高能粒子, 共振关系

Abstract:

A hybrid simulation of non-resonant fishbone (NRF) instabilities with reversed safety factor profile is investigated with a global kinetic-magnetohydrodynamic (MHD) code (M3D-K). With EAST parameters, NRF instability can be driven by energetic particles as minimum safety factor is a little greater than unity. With analysis on energy resonance, physical mechanism of NRF excited by energetic particles at different angles is studied. Parameters such as injection energy E, Phot/Ptotal, are scanned to find parameter thresholds and change of fishbone instability. In addition, we analyze slowing-down distribution of energetic particles, evolution of mode structure and fishbone mode sweep in nonlinear process. A flattening trend of nonlinear slowing-down distribution at Λ = 0.6, 0.7, 1.0 is consistent with that of energetic particles in experiments. Mode structure evolves from that of NRF mode to those of other high-frequency modes at Λ = 0.6. The upward sweep frequency of fishbone is consistent with the sweep frequency of classical fishbone at Λ = 0.6.

Key words: non-resonant fishbone instability, reversed safety factor profile, passing energetic particles, energy resonance relation