1 |
马梓程, 帅爽, 谢菲, 等. 嵌于扎格罗斯山脉中的"宝石"——盐丘[J]. 中国资源综合利用, 2020, 38 (6): 86-87+123.
|
2 |
徐慧. 什么是地下盐丘?[J]. 资源环境与工程, 2016, 30 (4): 666- 667.
|
3 |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
DOI
|
4 |
ZHANG Qingfu , YAO Jun , HUANG Zhaoqin , et al. A multiscale deep learning model for fractured porous media[J]. Chinese Journal of Computational Physics, 2019, 36 (6): 665- 672.
|
5 |
DONG Peng, LIAO Xinwei. An Efficient approach for automatic well-testing interpretation based on surrogate model and deep reinforcement learning[J/OL]. Chinese Journal of Computational Physics, 2023, 40(1): 67-80.
|
6 |
XIAO Cong , ZHANG Shicheng , MA Xinfang , et al. Model-reduced autoregressive neural network for parameter inversion[J]. Chinese Journal of Computational Physics, 2022, 39 (5): 564- 578.
|
7 |
SHI Y , WU X , FOMEL S . Interactively tracking seismic geobodies with a deep-learning flood-filling network[J]. Geophysics, 2021, 86 (1): A1- A5.
|
8 |
ZHANG H , CHEN T , LIU Y , et al. Automatic seismic facies interpretation using supervised deep learningFacies interpretation by deep learning[J]. Geophysics, 2021, 86 (1): IM15- IM33.
DOI
|
9 |
丰超, 潘建国, 李闯, 等. 基于深度神经网络的断层高分辨率识别方法[J/OL]. 地球科学, 48(8): 3044-3052.
|
10 |
DI H, WANG Z, ALREGIB G. Real-time seismic-image interpretation via deconvolutional neural network[C]//2018 SEG International Exposition and Annual Meeting, OnePetro, 2018: 2051-2055.
|
11 |
DI H, WANG Z, ALREGIB G. Deep convolutional neural networks for seismic salt-body delineation[C]//AAPG Annual Convention and Exhibition, 2018: 90323.
|
12 |
SHI Y, WU X, FOMEL S. Automatic salt-body classification using a deep convolutional neural network[M]//SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, 2018: 1971-1975.
|
13 |
WALDELAND A U, SOLBERG A. Salt classification using deep learning[C]//79th eage conference and exhibition 2017, European Association of Geoscientists & Engineers, 2017: 1-5.
|
14 |
WU X , LIANG L , SHI Y , et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics, 2019, 84 (3): IM35- IM45.
DOI
|
15 |
ZENG Y, JIANG K, CHEN J. Automatic seismic salt interpretation with deep convolutional neural networks[C]//Proceedings of the 20193rd International Conference on Information System and Data Mining, 2019: 16-20.
|
16 |
LI H , HU Q , MAO Y , et al. Deep learning-based model for automatic salt rock segmentation[J]. Rock Mechanics and Rock Engineering, 2022, 55 (6): 3735- 3747.
DOI
|
17 |
张玉玺, 刘洋, 张浩然, 等. 基于深度学习的多属性盐丘自动识别方法[J]. 石油地球物理勘探, 2020, 55 (3): 475-483+467.
|
18 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention. Springer, Cham, 2015: 234-241.
|
19 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
20 |
BERMAN M, TRIKI A R, BLASCHKO M B. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4413-4421.
|
21 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
22 |
卢新瑞, 黄捍东, 李帅, 等. 基于U-Net的盐体识别方法[J]. 计算物理, 2020, 37 (3): 327- 334.
|
23 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
|
24 |
程国建, 刘宁, 万晓龙, 等. 结合SKNet与U-Net的盐体识别方法[J]. 油气地质与采收率, 2022, 29 (1): 62- 68.
|
25 |
LIU B, JING H, LI J, et al. Image segmentation of salt deposits using deep convolutional neural network[C]//2019 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2019: 3304-3309.
|