计算物理 ›› 2023, Vol. 40 ›› Issue (5): 614-621.DOI: 10.19596/j.cnki.1001-246x.8639

• • 上一篇    下一篇

基于自适应全变差的低剂量X射线图像重建

屈赵燕1(), 闫喜明2, 席晓晶1   

  1. 1. 运城学院物理与电子工程系, 山西 运城 044000
    2. 国网运城供电公司, 山西 运城 044000
  • 收稿日期:2022-09-13 出版日期:2023-09-25 发布日期:2023-11-02
  • 作者简介:

    屈赵燕,女,博士,讲师,研究方向为CT图像重建, E-mail:

  • 基金资助:
    国家自然科学基金(61971381); 山西省高等学校科技创新项目(2021L471); 运城学院引进人才科研启动项目(YQ-2021007)

Low-dose X-ray CT Image Reconstruction Method Based on Adaptive Total Variation

Zhaoyan QU1(), Ximing YAN2, Xiaojing XI1   

  1. 1. Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng, Shanxi 044000 China
    2. State Grid Yuncheng Power Supply Company, Yuncheng, Shanxi 044000 China
  • Received:2022-09-13 Online:2023-09-25 Published:2023-11-02

摘要:

针对传统全变差正则化方法对图像方向不敏感的问题, 引入方向梯度信息, 建立一种自适应方向全变差的低剂量稀疏角度X射线计算机断层成像图像的成像模型, 旨在降低辐射剂量的同时提高图像成像质量。为了自适应估计图像梯度的方向信息, 基于图像的几何矩, 利用椭圆可操纵核来估计图像边缘块的主方向。仿真和实际数据结果表明所提算法在图像细节保留、伪影减少、噪声抑制方面具有很好的效果。

关键词: 低剂量, X射线计算机断层成像, 稀疏成像, 方向梯度, 全变差

Abstract:

The radiation dose of X-ray CT is closely related to the abnormal metabolism of the living body and the induction of diseases such as cancer. At this stage, how to reduce the radiation dose of CT scans and ensure the quality of image reconstruction is a huge challenge for CT image reconstruction technology. The traditional total variation regularization method is not sensitive to the direction of the image. This paper introduces directional gradient information and establishes an adaptive directional total variation sparse angle CT image reconstruction model, which aims to better preserve image edges and improve image reconstruction quality. To adaptively estimate the direction information of the image gradient, based on the geometric moment of the image, an ellipse steerable kernel is used to estimate the main direction of the image edge block. Simulation and actual data results show that the proposed algorithm has good performance in image detail preservation, artifact reduction, and noise suppression.

Key words: low-dose, X-ray CT, sparse-view reconstruction, gradient direction, total variation