计算物理 ›› 2024, Vol. 41 ›› Issue (1): 87-97.DOI: 10.19596/j.cnki.1001-246x.8768
• 面向超级计算机的性能优化技术与数值并行算法专刊 • 上一篇 下一篇
舒适1(), 岳孝强1, 何剑萌1,*(), 徐小文2,*(), 莫则尧2
收稿日期:
2023-05-31
出版日期:
2024-01-25
发布日期:
2024-02-05
通讯作者:
何剑萌,徐小文
作者简介:
舒适, 男, 博士, 教授, 博士生导师, 研究方向为偏微分方程数值解、多重网格法和区域分解法等, E-mail: shushi@xtu.edu.cn
基金资助:
Shi SHU1(), Xiaoqiang YUE1, Jianmeng HE1,*(), Xiaowen XU2,*(), Zeyao MO2
Received:
2023-05-31
Online:
2024-01-25
Published:
2024-02-05
Contact:
Jianmeng HE, Xiaowen XU
摘要:
对求解多群辐射扩散(MGRD)方程组的大规模离散系统的已有快速算法进行分类, 给出相应的综述。基于近年来所设计的关于并行代数多重网格(AMG)方面的工作, 形成基于物理量的近似Schur补型与基于物理和代数特征的组合型预条件算法和理论框架, 并对这些工作在该框架下的要素进行了刻画。利用上述框架, 设计一种具有基本逼近性和低计算复杂度的近似Schur补型预条件子, 并建立相应的谱等价理论; 对比数值实验表明: 新预条件子具有更好的稳健性和计算效率。最后提出需要进一步解决的若干问题。
中图分类号:
舒适, 岳孝强, 何剑萌, 徐小文, 莫则尧. 多群辐射扩散问题特征驱动的并行AMG法[J]. 计算物理, 2024, 41(1): 87-97.
Shi SHU, Xiaoqiang YUE, Jianmeng HE, Xiaowen XU, Zeyao MO. Feature-driven Parallel Algebraic Multigrid Methods for Multi-group Radiation Diffusion Problems[J]. Chinese Journal of Computational Physics, 2024, 41(1): 87-97.
n | P | NT | NNL | NL | NL-Max | NL-Ave |
1 575 | 1 644 | 6 349 | 16 414 | 5 | 2.58 | |
BP | 1 657 | 6 412 | 19 737 | 200 | 3.07 | |
6 093 | 1 598 | 8 666 | 22 475 | 5 | 2.55 | |
BP | 1 616 | 8 784 | 28 390 | 200 | 3.23 | |
23 961 | 1 637 | 18 768 | 46 200 | 5 | 2.46 | |
BP | 1 678 | 19 695 | 60 923 | 200 | 3.09 |
表1 $\overline{\boldsymbol{B}}_{\mathrm{U}}$-GMRES(30)和BP-GMRES(30)的迭代次数
Table 1 Number of iterations of $\overline{\boldsymbol{B}}_{\mathrm{U}}$-GMRES(30) and BP-GMRES(30)
n | P | NT | NNL | NL | NL-Max | NL-Ave |
1 575 | 1 644 | 6 349 | 16 414 | 5 | 2.58 | |
BP | 1 657 | 6 412 | 19 737 | 200 | 3.07 | |
6 093 | 1 598 | 8 666 | 22 475 | 5 | 2.55 | |
BP | 1 616 | 8 784 | 28 390 | 200 | 3.23 | |
23 961 | 1 637 | 18 768 | 46 200 | 5 | 2.46 | |
BP | 1 678 | 19 695 | 60 923 | 200 | 3.09 |
Mesh | np | BoomerAMG | B3 | |||||||
48 | 144 | 432 | 1 296 | 48 | 144 | 432 | 1 296 | |||
T3 | 26 | 28 | 28 | 31 | 3 | 3 | 3 | 4 | ||
T4 | 70 | 71 | 71 | 74 | 4 | 4 | 4 | 4 | ||
T5 | 42 | 45 | 46 | 44 | 4 | 4 | 5 | 5 | ||
T6 | 88 | 91 | 93 | 96 | 5 | 5 | 5 | 6 | ||
np | BoomerAMG | B3 | ||||||||
48 | 144 | 432 | 1 296 | 48 | 144 | 432 | 1 296 | |||
100.0% | 66.9% | 52.1% | 38.2% | 100.0% | 63.8% | 49.3% | 36.0% | |||
100.0% | 70.1% | 58.4% | 47.0% | 100.0% | 69.1% | 56.4% | 44.5% |
表2 两种右预处理FGMRES(30)解法器在强可扩展意义下的迭代次数(上)和平均并行效率(下)
Table 2 Number of iterations (top table) and average parallel efficiency (bottom table) of tworight- preconditioned FGMRES(30) solvers in A strong scaling study
Mesh | np | BoomerAMG | B3 | |||||||
48 | 144 | 432 | 1 296 | 48 | 144 | 432 | 1 296 | |||
T3 | 26 | 28 | 28 | 31 | 3 | 3 | 3 | 4 | ||
T4 | 70 | 71 | 71 | 74 | 4 | 4 | 4 | 4 | ||
T5 | 42 | 45 | 46 | 44 | 4 | 4 | 5 | 5 | ||
T6 | 88 | 91 | 93 | 96 | 5 | 5 | 5 | 6 | ||
np | BoomerAMG | B3 | ||||||||
48 | 144 | 432 | 1 296 | 48 | 144 | 432 | 1 296 | |||
100.0% | 66.9% | 52.1% | 38.2% | 100.0% | 63.8% | 49.3% | 36.0% | |||
100.0% | 70.1% | 58.4% | 47.0% | 100.0% | 69.1% | 56.4% | 44.5% |
np | BoomerAMG | Euclid(1) | B2 | |||||||||||
352 | 704 | 1 408 | 2 816 | 352 | 704 | 1 408 | 2 816 | 352 | 704 | 1 408 | 2 816 | |||
M1 | 47 | 49 | 49 | 51 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | ||
M2 | 31 | 33 | 34 | 33 | 21 | 21 | 21 | 21 | 4 | 4 | 4 | 4 | ||
M3 | 29 | 31 | 31 | 30 | 2 | 2 | 3 | 2 | 4 | 4 | 4 | 4 | ||
M4 | 58 | 59 | 57 | 43 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | ||
M5 | 41 | 42 | 41 | 43 | >200 | >200 | >200 | >200 | 4 | 4 | 5 | 4 | ||
M6 | 44 | 43 | 46 | 46 | >200 | >200 | >200 | >200 | 5 | 5 | 5 | 5 | ||
np | BoomerAMG | Euclid(1) | B2 | |||||||||||
352 | 704 | 1 408 | 2 816 | 352 | 704 | 1 408 | 2 816 | 352 | 704 | 1 408 | 2 816 | |||
M1 | 18.4 | 16.1 | 12.7 | 9.5 | 1.8 | 1.2 | 0.8 | 0.5 | 6.6 | 5.2 | 2.3 | 1.4 | ||
M2 | 12.2 | 10.9 | 8.9 | 6.6 | 12.7 | 7.7 | 4.8 | 2.9 | 9.2 | 5.4 | 3.2 | 1.9 | ||
M3 | 11.0 | 9.8 | 8.1 | 6.1 | 1.3 | 0.8 | 0.5 | 0.3 | 9.1 | 5.3 | 3.1 | 1.8 | ||
M4 | 20.1 | 17.6 | 14.0 | 10.3 | 2.6 | 1.6 | 0.9 | 0.6 | 11.1 | 6.5 | 3.8 | 2.2 | ||
M5 | 14.3 | 12.7 | 10.2 | 7.7 | - | - | - | - | 9.2 | 5.4 | 4.0 | 1.9 | ||
M6 | 16.2 | 14.2 | 11.1 | 8.3 | - | - | - | - | 11.2 | 6.6 | 3.9 | 2.3 |
表3 三种右预处理的GMRES(30) 在强可扩展意义下的迭代次数(上)和CPU时间(下)(单位:s)
Table 3 Number of iterations (top table) and wall time (bottom table) of three right-preconditioned GMRES(30) solvers in A strong scaling study(unit: s)
np | BoomerAMG | Euclid(1) | B2 | |||||||||||
352 | 704 | 1 408 | 2 816 | 352 | 704 | 1 408 | 2 816 | 352 | 704 | 1 408 | 2 816 | |||
M1 | 47 | 49 | 49 | 51 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 3 | ||
M2 | 31 | 33 | 34 | 33 | 21 | 21 | 21 | 21 | 4 | 4 | 4 | 4 | ||
M3 | 29 | 31 | 31 | 30 | 2 | 2 | 3 | 2 | 4 | 4 | 4 | 4 | ||
M4 | 58 | 59 | 57 | 43 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | ||
M5 | 41 | 42 | 41 | 43 | >200 | >200 | >200 | >200 | 4 | 4 | 5 | 4 | ||
M6 | 44 | 43 | 46 | 46 | >200 | >200 | >200 | >200 | 5 | 5 | 5 | 5 | ||
np | BoomerAMG | Euclid(1) | B2 | |||||||||||
352 | 704 | 1 408 | 2 816 | 352 | 704 | 1 408 | 2 816 | 352 | 704 | 1 408 | 2 816 | |||
M1 | 18.4 | 16.1 | 12.7 | 9.5 | 1.8 | 1.2 | 0.8 | 0.5 | 6.6 | 5.2 | 2.3 | 1.4 | ||
M2 | 12.2 | 10.9 | 8.9 | 6.6 | 12.7 | 7.7 | 4.8 | 2.9 | 9.2 | 5.4 | 3.2 | 1.9 | ||
M3 | 11.0 | 9.8 | 8.1 | 6.1 | 1.3 | 0.8 | 0.5 | 0.3 | 9.1 | 5.3 | 3.1 | 1.8 | ||
M4 | 20.1 | 17.6 | 14.0 | 10.3 | 2.6 | 1.6 | 0.9 | 0.6 | 11.1 | 6.5 | 3.8 | 2.2 | ||
M5 | 14.3 | 12.7 | 10.2 | 7.7 | - | - | - | - | 9.2 | 5.4 | 4.0 | 1.9 | ||
M6 | 16.2 | 14.2 | 11.1 | 8.3 | - | - | - | - | 11.2 | 6.6 | 3.9 | 2.3 |
1 | MIHALAS D , MIHALAS B W . Foundations of radiation hydrodynamics[M]. New York: Oxford University Press, 1984. |
2 | PORMRANING G C . The equations of radiation hydrodynamics[M]. Oxford: Pergamon Press, 1973. |
3 | CASTOR J I . Radiation hydrodynamics[M]. New York: Cambridge University Press, 2004. |
4 | AMESTOY P R , BUTTARI A , L'EXCELLENT J Y , et al. Performance and scalability of the block low-rank multifrontal factorization on multicore architectures[J]. ACM Transactions on Mathematical Software, 2019, 45 (1): 1- 26. |
5 |
SCHENK O , GÄRTNER K , FICHTNER W , et al. PARDISO: A high-performance serial and parallel sparse linear solver in semiconductor device simulation[J]. Future Generation Computer Systems, 2001, 18 (1): 69- 78.
DOI |
6 |
LI X S . An overview of SuperLU: Algorithms, implementation, and user interface[J]. ACM Transactions on Mathematical Software, 2005, 31 (3): 302- 325.
DOI |
7 |
XIA Jianlin , CHANDRASEKARAN S , GU Ming , et al. Superfast multifrontal method for large structured linear systems of equations[J]. SIAM Journal on Matrix Analysis and Applications, 2010, 31 (3): 1382- 1411.
DOI |
8 |
DAVIS T A . Algorithm 832: UMFPACK V4.3——an unsymmetric-pattern multifrontal method[J]. ACM Transactions on Mathematical Software, 2004, 30 (2): 196- 199.
DOI |
9 |
VAN DER VORST H A . Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1992, 13 (2): 631- 644.
DOI |
10 |
HESTENES M R , STIEFEL E . Methods of conjugate gradients for solving linear systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49 (6): 409- 436.
DOI |
11 |
SAAD Y , SCHULTZ M H . GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7 (3): 856- 869.
DOI |
12 |
PAIGE C C , SAUNDERS M A . Solution of sparse indefinite systems of linear equations[J]. SIAM Journal on Numerical Analysis, 1975, 12 (4): 617- 629.
DOI |
13 |
CLEARY A J , FALGOUT R D , HENSON V E , et al. Robustness and scalability of algebraic multigrid[J]. SIAM Journal on Scientific Computing, 2000, 21 (5): 1886- 1908.
DOI |
14 |
XU Xiaowen , MO Zeyao . Algebraic interface-based coarsening AMG preconditioner for multi-scale sparse matrices with applications to radiation hydrodynamics computation[J]. Numerical Linear Algebra with Applications, 2017, 24 (2): e2078.
DOI |
15 | 徐小文, 莫则尧, 安恒斌. 求解大规模稀疏线性代数方程组序列的自适应AMG预条件策略[J]. 中国科学(信息科学), 2016, 46 (10): 1411- 1420. |
16 |
XU Xiaowen , MO Zeyao , YUE Xiaoqiang , et al. αSetup-AMG: An adaptive-setup-based parallel AMG solver for sequence of sparse linear systems[J]. CCF Transactions on High Performance Computing, 2020, 2 (2): 98- 110.
DOI |
17 |
BALDWIN C , BROWN P N , FALGOUT R , et al. Iterative linear solvers in a 2D radiation-hydrodynamics code: methods and performance[J]. Journal of Computational Physics, 1999, 154 (1): 1- 40.
DOI |
18 | 肖映雄, 舒适, 张平文, 等. 求解二维三温能量方程的半粗化代数多重网格法[J]. 数值计算与计算机应用, 2003, 24 (4): 293- 303. |
19 |
JIANG Jun , HUANG Yunqing , SHU Shi , et al. Some new discretization and adaptation and multigrid methods for 2-D 3-T diffusion equations[J]. Journal of Computational Physics, 2007, 224 (1): 168- 181.
DOI |
20 | 舒适, 岳孝强, 周志阳, 等. SAMR网格上扩散方程有限体格式的逼近性与两层网格算法[J]. 计算物理, 2014, 31 (4): 390- 402. |
21 |
MO Zeyao , SHEN Longjun , WITTUM G . Parallel adaptive multigrid algorithm for 2-d 3-t diffusion equations[J]. International Journal of Computer Mathematics, 2004, 81 (3): 361- 374.
DOI |
22 |
RIDER W J , KNOLL D A , OLSON G L . A multigrid Newton-Krylov method for multimaterial equilibrium radiation diffusion[J]. Journal of Computational Physics, 1999, 152 (1): 164- 191.
DOI |
23 |
BROWN P N , WOODWARD C S . Preconditioning strategies for fully implicit radiation diffusion with material-energy transfer[J]. SIAM Journal on Scientific Computing, 2001, 23 (2): 499- 516.
DOI |
24 |
GLOWINSKI R , TOIVANEN J . A multigrid preconditioner and automatic differentiation for non-equilibrium radiation diffusion problems[J]. Journal of Computational Physics, 2005, 207 (1): 354- 374.
DOI |
25 |
MOUSSEAU V A , KNOLL D A , RIDER W J . Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion[J]. Journal of Computational Physics, 2000, 160 (2): 743- 765.
DOI |
26 |
MOUSSEAU V A , KNOLL D A . New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion[J]. Journal of Computational Physics, 2003, 190 (1): 42- 51.
DOI |
27 |
FENG Tao , AN Hengbin , YU Xijun , et al. On linearization and preconditioning for radiation diffusion coupled to material thermal conduction equations[J]. Journal of Computational Physics, 2013, 236, 28- 40.
DOI |
28 |
FENG Tao , YU Xijun , AN Hengbin , et al. The preconditioned Jacobian-free Newton-Krylov methods for nonequilibrium radiation diffusion equations[J]. Journal of Computational and Applied Mathematics, 2014, 255, 60- 73.
DOI |
29 |
AN Hengbin , MO Zeyao , XU Xiaowen , et al. Operator-based preconditioning for the 2-D 3-T energy equations in radiation hydrodynamics simulations[J]. Journal of Computational Physics, 2019, 385, 51- 74.
DOI |
30 |
HU Qiya , ZHAO Lin . Domain decomposition preconditioners for the system generated by discontinuous Galerkin discretization of 2D-3T heat conduction equations[J]. Communications in Computational Physics, 2017, 22 (4): 1069- 1100.
DOI |
31 | YUE Xiaoqiang , SHU Shi , WANG Junxian , et al. Substructuring preconditioners with a simple coarse space for 2-D 3-T radiation diffusion equations[J]. Communications in Computational Physics, 2018, 23 (2): 540- 560. |
32 |
SHU Shi , LIU Menghuan , XU Xiaowen , et al. Algebraic multigrid block triangular preconditioning for multidimensional three-temperature radiation diffusion equations[J]. Advances in Applied Mathematics and Mechanics, 2021, 13 (5): 1203- 1226.
DOI |
33 |
徐小文, 莫则尧, 安恒斌. 求解二维三温辐射扩散方程组的一种代数两层迭代方法[J]. 计算物理, 2009, 26 (1): 1- 8.
DOI |
34 |
周志阳, 徐小文, 舒适, 等. 二维三温辐射扩散方程组两层预条件子的自适应求解[J]. 计算物理, 2012, 29 (4): 475- 483.
DOI |
35 |
HUANG Silu , YUE Xiaoqiang , XU Xiaowen . αSetup-PCTL: An adaptive setup-based two-level preconditioner for sequence of linear systems of three-temperature energy equations[J]. Communications in Computational Physics, 2022, 32 (5): 1287- 1309.
DOI |
36 |
YUE Xiaoqiang , WANG Chunqing , XU Xiaowen , et al. A new relaxed splitting preconditioner for multidimensional multi-group radiation diffusion equations[J]. East Asian Journal on Applied Mathematics, 2022, 12 (1): 163- 184.
DOI |
37 |
YUE Xiaoqiang , HE Jianmeng , XU Xiaowen , et al. Two physics-based Schwarz preconditioners for three-temperature radiation diffusion equations in high dimensions[J]. Communications in Computational Physics, 2022, 32 (3): 829- 849.
DOI |
38 |
YUE Xiaoqiang ZHANG Shulei , XU Xiaowen , et al. Algebraic multigrid block preconditioning for multi-group radiation diffusion equations[J]. Communications in Computational Physics, 2021, 29 (3): 831- 852.
DOI |
39 |
YUE Xiaoqiang , SHU Shi , XU Xiaowen , et al. An adaptive combined preconditioner with applications in radiation diffusion equations[J]. Communications in Computational Physics, 2015, 18 (5): 1313- 1335.
DOI |
40 | HU Xiaozhe , WU Shuhong , WU Xiaohui , et al. Combined preconditioning with applications in reservoir simulation[J]. Multiscale Modeling & Simulation, 2013, 11 (2): 507- 521. |
41 |
XU Xiaowen , YUE Xiaoqiang , MAO Runzhang , et al. JXPAMG: A parallel algebraic multigrid solver for extreme-scale numerical simulations[J]. CCF Transactions on High Performance Computing, 2023, 5 (1): 72- 83.
DOI |
[1] | 杭旭登, 李敬宏, 袁光伟. 多群辐射扩散方程组的分裂迭代算法收敛分析[J]. 计算物理, 2013, 30(1): 111-119. |
[2] | 周志阳, 徐小文, 舒适, 冯春生, 莫则尧. 二维三温辐射扩散方程组两层预条件子的自适应求解[J]. 计算物理, 2012, 29(4): 475-483. |
[3] | 周志阳, 聂存云, 舒适. 一种二阶混合有限体元格式的GAMG预条件子[J]. 计算物理, 2011, 28(4): 493-500. |
[4] | 徐小文, 莫则尧, 安恒斌. 求解二维三温辐射扩散方程组的一种代数两层迭代方法[J]. 计算物理, 2009, 26(1): 1-8. |
[5] | 谷同祥, 戴自换, 杭旭登, 符尚武, 刘兴平. 二维三温能量方程组的高效代数解法[J]. 计算物理, 2005, 22(6): 1-8. |
[6] | 吴建平, 李晓梅. 三维问题的局部块分解预条件[J]. 计算物理, 2003, 20(1): 76-80. |
[7] | 刘兴平, 莫则尧, 彭力田. 高维预条件子的填充技术[J]. 计算物理, 2000, 17(5): 476-482. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发