计算物理 ›› 2025, Vol. 42 ›› Issue (2): 232-242.DOI: 10.19596/j.cnki.1001-246x.8850

• 研究论文 • 上一篇    下一篇

磁控忆阻器耦合Hindmarsh-Rose神经元模型及其在DNA图像加密中的应用

赵益波1,2(), 杨清1,2, 于程程1,2, 刘明华3   

  1. 1. 南京信息工程大学电子与信息工程学院, 江苏 南京 210044
    2. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044
    3. 井冈山大学电子与信息工程学院, 江西 吉安 343009
  • 收稿日期:2023-10-24 出版日期:2025-03-25 发布日期:2025-04-08
  • 作者简介:

    赵益波, 研究方向为忆阻神经元及忆阻器神经网络在图像加密、表情识别中的应用, E-mail:

  • 基金资助:
    国家自然科学基金(62371242); 国家自然科学基金(61871230)

Novel Magnetron Memristor Coupled Hindmarsh-Rose Neuron Model and Its DNA Image Application in Encryption

Yibo ZHAO1,2(), Qing YANG1,2, Chengcheng YU1,2, Minghua LIU3   

  1. 1. School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
    2. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment, Nanjing, Jiangsu 210044, China
    3. School of Electronic and Information Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
  • Received:2023-10-24 Online:2025-03-25 Published:2025-04-08

摘要:

提出一种磁控忆阻器模型, 建立磁感应耦合Hindmarsh-Rose(HR)神经元模型。通过分岔图、李雅普诺夫指数谱、相位图以及时序图对所构建的神经元模型进行非线性动力学分析, 进而将模型所产生的混沌序列应用于DNA混沌图像加密算法。实验结果表明: 这种电磁感应HR神经元模型在磁感应强度的影响下能够产生多种放电模式和复杂的混沌行为, 并且基于该模型产生的混沌序列具有随机性, 初值敏感性, 遍历性等特点, 应用于混沌图像加密算法中具有较强的安全性。为理解神经元隐藏动力学机制和构建忆阻器神经元网络提供支持, 对神经元相关的病变治疗具有价值。

关键词: 忆阻器, Hindmarsh-Rose神经元, DNA序列, 混沌图像加密

Abstract:

Memristor coupled neurons have complex nonlinear dynamic behavior and have been widely used in neural computing and chaotic systems. In this paper, a new magnetic controlled memristor model is proposed, and the Hindmarsh-Rose(HR) neuron model is established. The neural model is analyzed by bifurcating diagram, Lyapunov exponent spectrum, phase diagram and time series diagram. Then the chaotic sequence generated by the model is applied to the DNA chaotic image encryption algorithm. The experimental results show that this HR neuron model can generate multiple discharge modes and complex chaotic behavior under the influence of magnetic induction intensity, and the generated chaotic sequences based on the model have the characteristics of randomness, initial value sensitivity, ergodic, etc., which has strong security when applied to chaotic image encryption algorithms. These results will provide strong support for understanding the dynamics of neuron hiding and constructing memristor neural network, and have great application value for the treatment of neuron-related lesions.

Key words: memristor, Hindmarsh-Rose neurons, DNA sequence, chaotic image encryption