计算物理 ›› 1991, Vol. 8 ›› Issue (3): 257-263.

• 论文 • 上一篇    下一篇

正规三角形网格上二维非线性守恒律组的二阶精度MmB差分格式

杨树礼   

  1. 中国科学院数学所, 北京 100080
  • 收稿日期:1991-04-12 修回日期:1991-09-01 出版日期:1991-09-25 发布日期:1991-09-25

SECOND ORDER ACCURATE MmB SCHEMES FOR 2-D NONLINEAR CONSE RVATION LAWS ON REGULAR TRIANGULAR MESHES

Yang Shuli   

  1. Institute of Mathematics, Academia Sinica, Beijing, China
  • Received:1991-04-12 Revised:1991-09-01 Online:1991-09-25 Published:1991-09-25

摘要: 本文在正规三角形网格上对二维非线性守恒双曲方程组的初值问题构造一类二阶精度MmB(locally Maximum-minimum Bounds preserving)差分格式,并用此格式对二维无粘Bergers方程的Riemann初值问题进行了计算,结果表明此格式具有高分辨率和非振荡等性质。

关键词: 正规三角网格, 二维非线性守恒律, MmB差分格式

Abstract: In this paper, a class of second order accurate MmB (locally Maximum_minimumBounds preserving) schemes is constructed for initial value problems of 2_D nonlinearconservation laws on regular triangular meshes, and the numerical solutions for Riemann problems of 2_D inviscid Bergers eqution are given by using these schemes. The numerical results showthat the schemes have high resolution and nonoscillatory properties.

Key words: regula triangular meshes, 2_D nonlinear hyperbolic eguation, MmB differenceschemes