计算物理 ›› 1992, Vol. 9 ›› Issue (S1): 495-497.

• 论文 • 上一篇    下一篇

T(q,r)阵BPSD迭代的收敛性

胡家赣   

  1. 北京应用物理与计算数学研究所, 100088
  • 收稿日期:1991-08-20 出版日期:1992-12-31 发布日期:1992-12-31

CONVERGENCE OF BPSD METHOD FOR T(q.r)MATRIX

Hu Jia gan   

  1. Institute of Applied Physics and Computational Mathematics, Beijing 100088
  • Received:1991-08-20 Online:1992-12-31 Published:1992-12-31

摘要: 本文由方程组Ax=f的系数矩阵AT(q,r)阵建立了BSSOR阵和块Jacobi阵特征值的关系式,从而对讨论了T(1,1)阵和T(1,2)阵BPSD迭代的收敛性和T(1,1)阵的最佳参数以及A为其它矩阵时PSD迭代的收敛性。推导简单有趣。

关键词: 线性代数力程组, 迭代法, PSD方法, T(q, r)阵

Abstract: In this paper, we obtain a necessary and sufficient condition, when the coefficient matrix A of the equation Ax=f considered is an T(1, 1) matrix,a sufficient condition, when A is an T(1, 2) or T(2, 1) matrix for the convergence of BPSD method.we also obtain the optimum parameters and the optimum rate of convergence of BPSD method, when A is an T(1, 1) matrix and a necessary and sufficient condition, when A is postive definite and we point out that the necessary and sufficient condition in [1] and [9] is only sufficient. The derivation is simple and interesting. Our method can also be used to prove the convergence of some other iterative methods.

Key words: system of linear algebraic equations, iterative method, PSD method, T(q,r)matrix