计算物理 ›› 1992, Vol. 9 ›› Issue (S1): 495-497.
• 论文 • 上一篇 下一篇
胡家赣
收稿日期:
出版日期:
发布日期:
Hu Jia gan
Received:
Online:
Published:
摘要: 本文由方程组Ax=f的系数矩阵A为T(q,r)阵建立了BSSOR阵和块Jacobi阵特征值的关系式,从而对讨论了T(1,1)阵和T(1,2)阵BPSD迭代的收敛性和T(1,1)阵的最佳参数以及A为其它矩阵时PSD迭代的收敛性。推导简单有趣。
关键词: 线性代数力程组, 迭代法, PSD方法, T(q, r)阵
Abstract: In this paper, we obtain a necessary and sufficient condition, when the coefficient matrix A of the equation Ax=f considered is an T(1, 1) matrix,a sufficient condition, when A is an T(1, 2) or T(2, 1) matrix for the convergence of BPSD method.we also obtain the optimum parameters and the optimum rate of convergence of BPSD method, when A is an T(1, 1) matrix and a necessary and sufficient condition, when A is postive definite and we point out that the necessary and sufficient condition in [1] and [9] is only sufficient. The derivation is simple and interesting. Our method can also be used to prove the convergence of some other iterative methods.
Key words: system of linear algebraic equations, iterative method, PSD method, T(q,r)matrix
胡家赣. T(q,r)阵BPSD迭代的收敛性[J]. 计算物理, 1992, 9(S1): 495-497.
Hu Jia gan. CONVERGENCE OF BPSD METHOD FOR T(q.r)MATRIX[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 9(S1): 495-497.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.cjcp.org.cn/CN/
http://www.cjcp.org.cn/CN/Y1992/V9/IS1/495