计算物理 ›› 2000, Vol. 17 ›› Issue (6): 593-601.

• 论文 •    下一篇

抛物方程基于自然边界归化的耦合法

杜其奎, 余德浩   

  1. 中国科学院数学与系统科学研究院计算数学与科学工程计算研究所, 科学与工程计算国家重点实验室, 北京 100080
  • 收稿日期:1999-06-09 修回日期:2000-03-17 出版日期:2000-11-25 发布日期:2000-11-25
  • 作者简介:杜其奎(1963~),男,安徽来安,副教授,博士,从事有限元边界元数值方法的研究,北京2719信箱.
  • 基金资助:
    国家自然科学基金及国家重点基础研究专项经费资助项目

THE COUPLED METHOD BASED ON THE NATURAL BOUNDARY REDUCTION FOR PARABOLIC EQUATION

DU Qi-kui, YU De-hao   

  1. State Key Laboratory of Scientific/Engineering Computing, Institution of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100080, P R China
  • Received:1999-06-09 Revised:2000-03-17 Online:2000-11-25 Published:2000-11-25

摘要: 将冯康和余德浩提出的自然边界归化方法[1~4]应用于求解抛物方程初边值外区域问题,提出一种自然边界元与有限元耦合算法。先将控制方程对时间进行离散化,得到关于时间步长的离散化格式,给出圆外域上的自然积分方程,基于此研究抛物方程无界区域问题的自然边界元与有限元耦合法,最后给出相应的数值例子。

关键词: 抛物方程, 自然边界归化, 耦合法, 数值方法

Abstract: A natural boundary reduction initiated and developed by Feng Kang and Yu Dehao[1~4] is applied to solve the exterior initial boundary value problem of 2D parabolic equation, and a new coupled method of the natural boundary element method(NBEM) and finite element method(FEM) is suggested. The governing equation is first discretized in time, leading to a time-stepping scheme. Second, the natural integral equation over circular domain is given, and the coupling of the NBEM and FEM for the parabolic equation with unbounded domain is studied. Finally, a numerical example is devoted to illustrate this new method.

Key words: parabolic equation, natural boundary reduction, coupled method, numerical implementation

中图分类号: