计算物理 ›› 2001, Vol. 18 ›› Issue (6): 549-555.

• 论文 • 上一篇    下一篇

解Hamilton-Jacobi方程的不连续有限元方法

李祥贵1,2, 蔚喜军2, 陈光南2   

  1. 1. 石油大学数学系, 山东 东营 257062;
    2. 应用物理与计算数学研究所, 北京 100088
  • 收稿日期:2000-12-25 修回日期:2001-05-15 出版日期:2001-11-25 发布日期:2001-11-25
  • 作者简介:李祥贵(1965-),男,湖北荆门,副教授,博士,上要从事计算数学方面的研究.
  • 基金资助:
    国家自然科学基金(19771012)和中国工程物理研究院科学基金(970683)资助项目

DISCONTINUOUS FINITE ELEMENT METHODS FOR HAMILTON-JACOBI EQUATIONS

LI Xiang-gui1,2, YU Xi-jun2, CHEN Guang-nan2   

  1. 1. University of Petroleum, Department of Mathematics, Shandong 257062, P R China;
    2. Institute of Applied Physics and Computational Mathematics, Beijing 100088, P R China
  • Received:2000-12-25 Revised:2001-05-15 Online:2001-11-25 Published:2001-11-25

摘要: 将两类具有不同基函数的有限元应用于Hamilton Jacobi方程,得到了求解Hamilton Jacobi方程的不连续有限元数值格式,并证明了这两类格式数值解在一定条件下收敛于Hamilton Jacobi方程的弱解.数值实例比较了两类格式的精度和分辨间断的能力.

关键词: 不连续有限元, Hamilton-Jacobi方程

Abstract: Two numerical schemes of discontinuous finite element methods are presented for Hamilton Jacobi equations which are obtained by using the different basic functions. The numerical solutions of these schemes converge to weak solutions of the Hamilton Jacobi equation under some conditions. Numerical tests given illustrate the accuracy and resolution of discontinuity for the two different schemes.

Key words: discontinuous finite element, Hamilton Jacobi equations

中图分类号: