计算物理 ›› 2005, Vol. 22 ›› Issue (3): 271-276.

• 研究简报 • 上一篇    下一篇

应用双高斯求积组求解柱几何下输运方程

朱瑞东1, 李茂生2   

  1. 1. 中国工程物理研究院北京研究生部, 北京 100088;
    2. 北京应用物理与计算数学研究所, 北京 100088
  • 收稿日期:2004-02-24 修回日期:2004-08-16 出版日期:2005-05-25 发布日期:2005-05-25
  • 作者简介:朱瑞东(1980-),男,安徽六安,硕士生,从事粒子物理与原子核物理方面的研究.

Double-Gauss Quadrature for Discrete Ordinate Transport Equations with Cylindrical Geometry

ZHU Rui-dong1, LI Mao-sheng2   

  1. 1. Beijing Department of Graduate School, China Academy of Engineering Physics, Beijing 100088, China;
    2. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • Received:2004-02-24 Revised:2004-08-16 Online:2005-05-25 Published:2005-05-25

摘要: 根据二维柱几何下输运方程对称性的特点,讨论了角度离散、求积组选取,提出极角采用双高斯求积组,方位角采用均匀分割Chebyshev-Gauss求积组的做法.通过源问题和临界问题的计算,表明上述求积组与Lee求积组相比,计算结果的精度和对称性都有改进.

关键词: 离散纵标法, 高斯求积组

Abstract: An accurate angular quadrature is developed with cylindrical symmetry in transport equations. The most appropriate quadrature for polar angles is the Double-Gauss and for azimuthal angles is the Chebyshev-Gauss in cylindrical geometry. Numerical comparisons of quadratures on two standard problems are shown. They suggest that the new quadrature proves competitive for transport problems both in reducing ray effects and in improving accuracy.

Key words: discrete ordinate methods, double-Gauss quadrature

中图分类号: