计算物理 ›› 2006, Vol. 23 ›› Issue (5): 609-613.

• 论文 • 上一篇    下一篇

快速多极子方法中角谱积分分析

叶红霞, 金亚秋   

  1. 复旦大学波散射与遥感信息国家教育部重点实验室, 上海 200433
  • 收稿日期:2005-04-13 修回日期:2005-12-28 出版日期:2006-09-25 发布日期:2006-09-25
  • 作者简介:叶红霞(1976-),famale,Nantong,Jiangsu,PhD candidate,Computational Electromagnetics.
  • 基金资助:
    Supported by the China State Major Basic Research Project (2001CB309401) and China National Natural Science Foundation (No.60571050)

Spatial Angle Quadrature in FMM

YE Hong-xia, JIN Ya-qiu   

  1. The Key Laboratory of Wave Scattering and Remote Sensing Information(Ministry of Education), Fudan University, Shanghai 200433, China
  • Received:2005-04-13 Revised:2005-12-28 Online:2006-09-25 Published:2006-09-25
  • Supported by:
    Supported by the China State Major Basic Research Project (2001CB309401) and China National Natural Science Foundation (No.60571050)

摘要: 从基本球面波函数的平面波展开式出发,分析了对空间角谱二维积分表达式中被积函数频谱特性,从采样定理的角度得出(2L,4L)的求积标准.比较了采用不同的求积方式得到的积分结果,并与球面波函数的准确值进行比较.对轴向平面电磁波照射的立方导体进行直接的矩量法(MOM)分析和不同求积点的FMM方法分析,比较两种方法计算得到的阻抗矩阵与入射向量相乘的结果.结果表明:用该求积方式得到结果与直接MOM方法的计算结果吻合.

关键词: 快速多极子, 频谱分析, 角谱积分

Abstract: We analyze the integrand spectrum in the plane wave expansion of spherical functions,and present a standard of(2L,4L) point quadrature for spatial angles satisfying the sampling theorem.Numerical results with the method of moments(MOM) and fast multipole method(FMM) in different quadrature schemes are compared to show the validation of our quadrature scheme.

Key words: fast multipole method, spectrum analysis, spatial angle quadrature

中图分类号: