计算物理 ›› 2007, Vol. 24 ›› Issue (1): 59-64.

• 论文 • 上一篇    下一篇

三维静电场线性插值边界元中的解析积分方法

李亚莎1, 王泽忠2, 卢斌先2   

  1. 1. 华北电力大学 电力系统保护与动态安全监控教育部重点实验室, 北京 102206;
    2. 华北电力大学 高电压与电磁兼容北京市重点实验室, 北京 102206
  • 收稿日期:2005-10-24 修回日期:2006-04-04 出版日期:2007-01-25 发布日期:2007-01-25
  • 作者简介:李亚莎(1967-),男,山东济宁,博士生,从事电磁场数值计算方面的研究,华北电力大学393信箱102206.

Analytical Integrals in the Linear Interpolation BEM for 3-D Electrostatic Fields

LI Yasha1, WANG Zezhong2, LU Binxian2   

  1. 1. Key Laboratory of Power System Protection and Dynamic Security Monitoring and Control under Ministry of Education, North China Electric Power University, Beijing 102206, China;
    2. Bering Key Laboratory of High Voltage & EMC, North China Electric Power University, Beijing 102206, China
  • Received:2005-10-24 Revised:2006-04-04 Online:2007-01-25 Published:2007-01-25

摘要: 提出求解三维静电场的三角形线性插值边界元解析积分方法.针对含1/R和1/R2的积分项,将单元形状函数分解为常数项、含x的线性项和含y的线性项,从而将边界单元积分简化为6个基本积分组合,并导出其解析计算公式,避免了因形状函数改变而导致的重复计算.该方法不仅可以准确计算远离奇异情况下的边界元积分,而且可以准确计算一阶和二阶接近奇异积分以及一阶奇异积分.计算结果表明,在接近奇异积分和奇异积分比较突出的问题中,当数值积分方法不能给出正确结果时,用同样的边界元网格,解析积分方法可以给出正确的结果,提高了三维静电场线性插值边界元法的计算精度.

关键词: 静电场计算, 边界元法, 解析积分方法, 奇异积分

Abstract: 3-D electrostatic fields are calculated by the linear interpolation triangular boundary element method (BEM) with analytical integrals.For integrals with 1/R and 1/R2,shape functions are disintegrated into constant,x linear and y linear terms.The boundary element integral is simplified to 6 basic integral assemblies.Analytical integral formulas for them are introduced.Repeat calculations resulting from different shape functions are avoid.The method calculates exactly integrals far from singularity, 1 and 2 order nearly singular integrals and 1 order singular integrals as well.It shows that for problems with nearly integrals and singular integrals the analytical integral method gives correct results while the numerical integral method with the same boundary meshes can not.The precision in linear interpolation BEM for 3-D electrostatic fields is improved.

Key words: electrostatic field calculation, boundary element method, analytical integral method, singular integral

中图分类号: