计算物理 ›› 2008, Vol. 25 ›› Issue (1): 29-35.

• 研究论文 • 上一篇    下一篇

双曲型守恒律的一种五阶半离散中心迎风格式

胡彦梅1, 陈建忠2, 封建湖1   

  1. 1. 长安大学理学院, 陕西 西安 710064;
    2. 西北工业大学, 陕西 西安 710072
  • 收稿日期:2006-06-12 修回日期:2007-05-01 出版日期:2008-01-25 发布日期:2008-01-25
  • 作者简介:胡彦梅(1976-),女,宁夏,硕士,从事计算流体力学方面的研究.

A Fifth-order Semi-discrete Central-upwind Scheme for Hyperbolic Conservation Laws

HU Yanmei1, CHEN Jianzhong2, FENG Jianhu1   

  1. 1. College of Science, Chang'an University, Xi'an 710064, China;
    2. Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2006-06-12 Revised:2007-05-01 Online:2008-01-25 Published:2008-01-25

摘要: 给出一种求解双曲型守恒律的五阶半离散中心迎风格式.对一维问题,该格式以五阶中心WENO重构为基础;对二维问题,用逐维计算的方法将五阶中心WENO重构进行推广.时间方向的离散采用Runge-Kutta方法.格式保持了中心差分格式简单的优点,即不用求解Riemann问题,避免进行特征分解.用该格式对一维和二维Euler方程进行数值试验,结果表明该格式是高精度、高分辨率的.

关键词: 双曲型守恒律, 中心迎风差分格式, 半离散, 中心WENO重构

Abstract: A fifth-order semi-discrete central-upwind scheme for hyperbolic conservation laws is proposed. In one dimension, the scheme is based on a fifth-order central weighted essentially non-oscillatory(WENO) reconstruction:In two dimensions, the reconstruction is generalized by a dimension-by-dimension approach. A Runge-Kutta method is employed in time integration. The method requires neither Riemann solvers nor characteristic decomposition and therefore enjoys main advantage of the central schemes. The present scheme is verified by one and two dimensional Euler equations of gas dynamics and shows high resolution and high accuracy.

Key words: hyperbolic conservation laws, central-upwind schemes, semi-discrete, central WENO reconstruction

中图分类号: