计算物理 ›› 2009, Vol. 26 ›› Issue (1): 1-8.

• 研究论文 •    下一篇

求解二维三温辐射扩散方程组的一种代数两层迭代方法

徐小文, 莫则尧, 安恒斌   

  1. 北京应用物理与计算数学研究所高性能计算中心, 北京 100088
  • 收稿日期:2007-11-07 修回日期:2008-01-25 出版日期:2009-01-25 发布日期:2009-01-25
  • 作者简介:徐小文(1978-),男,湖南郴州,博士,助理研究员,从事代数多重网格和并行计算方面的研究.
  • 基金资助:
    国家杰出青年基金(60425205);国家973项目(2005CB321702);国家自然科学基金(60533020,10571017);国家自然科学青年基金(10701015)资助项目

Algebraic Two-level Iterative Method for 2-D 3-T Radiation Diffusion Equations

XU Xiaowen, MO Zeyao, AN Hengbin   

  1. High Performance Computing Center, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • Received:2007-11-07 Revised:2008-01-25 Online:2009-01-25 Published:2009-01-25

摘要: 在二维三温辐射扩散方程离散代数方程组的求解中,由于光子、电子和离子温度之间存在耦合关系,而且三个温度在同种介质中有不同的扩散性质,使得经典的代数多重网格(AMG)方法难以直接应用.基于特殊粗化策略,在粗网格层解除了这种耦合关系,得到一种代数两层网格方法,而粗网格方程由经典AMG方法求解.将这一算法具体应用于JFNK(Jacobian自由的Newton-Krylov)框架中预处理方程的求解,并基于该框架求解二维三温辐射扩散方程组.数值结果显示了算法的可扩展性和健壮性.

关键词: 二维三温方程, 辐射扩散, 代数多重网格(AMG), 预条件子, Newton-Krylov (NK)

Abstract: A two-level iterative method is proposed for linear systems discretizated from two-dimensional(2-D) radiative diffusion equations with photon, electron,ion temperatures(3-T).The main idea is to decouple one temperature from other two by a special coarsening strategy.Variables related to electron temperature are forced to be selected as coarse points and photon and ion temperatures are forced to be fine points.Several single temperature equations instead of coupled linear systems need to be solved by a classical-AMG method.The method is applied to the JFNK framework for preconditioning.Numerical results show effectiveness of the method.

Key words: two-dimensional three-temperature equations, radiation diffusion, algebraic multigrid (AMG), preconditioner, Newton-Krylov (NK)

中图分类号: