计算物理 ›› 2009, Vol. 26 ›› Issue (2): 287-292.

• 研究论文 • 上一篇    下一篇

1+1维Wolf-Villain模型奇异标度行为的数值模拟

寻之朋, 唐刚, 韩奎, 夏辉, 郝大鹏, 周伟, 杨细全   

  1. 中国矿业大学理学院物理系, 江苏 徐州 221008
  • 收稿日期:2007-11-22 修回日期:2008-04-06 出版日期:2009-03-25 发布日期:2009-03-25
  • 作者简介:寻之朋(1983-),男,山东金乡,博士生,从事表面界面粗糙生长动力学方面的研究.
  • 基金资助:
    国家自然科学基金(批准号:10674177);教育部留学回国人员科研启动基金(批准号:200318)资助项目

Anomalous Dynamic Scaling in 1+1 Dimensional Wolf-Villain Model

XUN Zhipeng, TANG Gang, HAN Kui, XIA Hui, HAO Dapeng, ZHOU Wei, YANG Xiquan   

  1. Department of Physics, College of Sciences, China University of Mining and Technology, Xuzhou 221008, China
  • Received:2007-11-22 Revised:2008-04-06 Online:2009-03-25 Published:2009-03-25

摘要: 采用Kinetic Monte Carlo(KMC)方法对描述分子束外延生长(MBE)的1+1维Wolf-Villain模型进行大尺寸和长生长时间的数值模拟研究,以消除渡越行为的影响.计算得到整体和局域标度指数.结果显示,在所模拟的空间和时间尺度范围内,1+1维Wolf-Villain模型仍呈现出固有奇异标度行为.这一结论与López等人最近的理论分析结果不一致.

关键词: 表面界面粗糙生长, Wolf-Villain模型, 奇异动力学标度, Kinetic Monte Carlo模拟

Abstract: 1+1 dimensional Wolf-Villain model for molecular-beam epitaxy(MBE) growth is investigated with kinetic Monte-Carlo simulation in large scale and during long growth time so that crossover effects are eliminated.Global and local dynamic exponents are obtained.It is shown that Wolf-Villain model in 1+1 dimensions exhibits intrinsic anomalous scaling behavior in time and length simulated.The result is inconsistent with theoretical analysis by López.

Key words: kinetic roughening of surfaces and interfaces, Wolf-Villain model, anomalous scaling, kinetic Monte-Carlo simulation

中图分类号: