计算物理 ›› 2009, Vol. 26 ›› Issue (6): 942-948.

• 论文 • 上一篇    

用F-G-H方法研究玻色-爱因斯坦凝聚体基态性质

吴大鹏1, 门福殿1, 刘慧2   

  1. 1. 中国石油大学(华东)物理科学与技术学院, 山东 东营 257061;
    2. 安徽科技学院理学院, 安徽 蚌埠 233100
  • 收稿日期:2008-05-05 修回日期:2009-01-20 出版日期:2009-11-25 发布日期:2009-11-25
  • 作者简介:吴大鹏(1980-),男,辽宁沈阳,硕士生,主要从事玻色气体统计性质的研究工作.

Ground State of Bose-Einstein Condensation in F-G-H Method

WU Dapeng1, MEN Fudian1, LIU Hui2   

  1. 1. College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, China;
    2. College of Science, Anhui Science and Technology University, Bengbu 233100, China
  • Received:2008-05-05 Revised:2009-01-20 Online:2009-11-25 Published:2009-11-25

摘要: 用F-G-H方法数值求解描述BEC凝聚体的非线性薛定谔方程-Gross-Pitaevskii方程.研究总粒子数、粒子间相互作用、谐振频率和一般幂指数外势对玻色凝聚体粒子数密度分布、基态能量的影响.结果表明,增大幂指数外势、谐振频率,降低粒子间的排斥作用会增加凝聚体中心的粒子数密度、缩小凝聚体半径;增大总粒子数、谐振频率、粒子间的排斥作用和幂指数外势的指数会增大体系的基态能量;随着总粒子数增大,数值结果与托马斯-费米近似结果渐趋一致,托马斯-费米近似在大粒子数条件下是一种较好的近似方法,在粒子数有限时,结果与真实情形偏差较大,应采用数值解法.

关键词: F-G-H方法, 玻色-爱因斯坦凝聚, 粒子数密度, 基态能量

Abstract: We study distribution of particles in Bose-Einstein condensation and ground state energy of condensate by solving a G-P equation with Fourier-Grid-Hamiltonian(F-G-H) method. It is shown that particle density in condensate center increases and radius of condensate decreases as intensity of power-law potential or frequency of harmonic potential is increased or repulsive interaction between particles is decreased. The ground state energy of BEG increases with increasing of total particle number, repulsive interaction between particles, frequency of harmonic potential or intensity of power-law potential. Thomas-Fermi approximation results approximate to numerical results as particle number increases. It is shown that Thomas-Fermi approximation is a good method with large particle numbers. For less particle numbers, numerical method should be used.

Key words: the F-G-H method, Bose-Einstein condensation, particle density, ground state energy

中图分类号: