计算物理 ›› 2010, Vol. 27 ›› Issue (5): 633-640.

• 研究论文 •    下一篇

二维保单调保守恒插值算子

马利斌1,3, 胡晓燕2, 莫则尧2   

  1. 1. 中国科学院海洋研究所海洋环流与波动重点实验室, 山东 青岛 266071;
    2. 北京应用物理与计算数学研究所, 北京 100088;
    3. 中国工程物理研究院研究生部, 北京 100088
  • 收稿日期:2009-06-09 修回日期:2010-01-19 出版日期:2010-09-25 发布日期:2010-09-25
  • 作者简介:马利斌(1982-),男,湖南,硕士,从事并行自适应算法、海洋环流与气候环境变化研究.
  • 基金资助:
    国家自然科学基金(90718029,60903006)资助项目

A Two-dimensional Monotonicity-and Conservation-preserving Interpolation Operator

MA Libin1,3, HU Xiaoyan2, MO Zeyao2   

  1. 1. Key Laboratory of Ocean Circulation and Wave, Institite of Oceanology, Chinese Academy of Science, Qingdao 266071, China;
    2. Institude of Applied Physics and Computational Mathematics, Beijing 100088, China;
    3. Graduate School of China Academe of Engineer Physics, Beijing 100088, China
  • Received:2009-06-09 Revised:2010-01-19 Online:2010-09-25 Published:2010-09-25

摘要: 基于一个一维保单调保守恒插值算子,利用不完全双二次插值提出一个二维保单调保守恒插值算子.从插值逼近角度,通过几个数值实验验证该插值算子有效.用得到的二维插值算子作为结构网格自适应加密(structured adaptive mesh refinement,SAMR)算法中的细化插值算子,求解几个二维Euler方程数值例子,结果表明,提出的二维插值算子有效.

关键词: 保守恒, 保单调, 插值算子

Abstract: We propose a two-dimensional(2D) monotonicity-and conservation-preserving interpolation operator based on a one-dimensional monotonicity-and conservation-preserving interpolation operator.With several numerical examples we conclude that our interpolation operator is effective.Furthermore,we take it as a refinement interpolation operator in a structured adaptive mesh refinement(SAMR) algorithm to solve numerical examples governed by 2D Euler equation.Results show that our method is effective in SAMR.

Key words: monotonicity-preserving, conservation-preserving, interpolation operator

中图分类号: