计算物理 ›› 2011, Vol. 28 ›› Issue (3): 404-412.

• 研究论文 • 上一篇    下一篇

一阶速度-应力Biot双相各向同性介质弹性波波场分离数值模拟

陈可洋   

  1. 中国石油大庆油田有限责任公司 勘探开发研究院, 黑龙江 大庆 163712
  • 收稿日期:2010-05-04 修回日期:2010-09-13 出版日期:2011-05-25 发布日期:2011-05-25
  • 作者简介:陈可洋(1983-),男,浙江诸暨,助理工程师,硕士,主要从事地震渡正演数值模拟和逆时成像方法研究,大庆油田勘探开发研究院地震处理二室163712,E-mail:keyangchen@163.com

First-order Velocity-Stress Elastic Wave Field Separation Scheme for Biot Two-phase Isotropic Medium

CHEN Keyang   

  1. Exploration and Development Research Institute of Daqing Oilfield Company Limited, Daqing 163712, China
  • Received:2010-05-04 Revised:2010-09-13 Online:2011-05-25 Published:2011-05-25

摘要: 提出一种等价的一阶双曲型速度-应力Biot双相各向同性介质弹性波波动方程,以实现双相介质混合波场中纯快慢纵波和纯横波波场分离的问题.应用散度和旋度理论证明双相介质等价方程波场分离的可行性,采用高阶交错网格有限差分法构建高精度正演算子,推导其PML吸收边界条件和稳定性条件,并对均匀双相介质和层状非均匀双相介质模型进行数值模拟试验,准确得到固流相混合弹性波场、被完全分离的纯纵横波波场,同时边界吸收效果良好,数值模拟精度较高.计算结果还表明,固流相中的快慢纵波相互伴生因而无法实现分离,且归属于纯纵波波场,流相慢纵波能量比固相慢纵波能量强,这对认识双相介质弹性波的传播规律以及完善双相介质理论具有重要意义.

关键词: Biot双相各向同性介质, 等效波场分离数值模拟方程, 纯快慢纵波和纯横波, PML吸收边界条件, 固相和流相

Abstract: We propose an equivalent first-order hyperbolic velocity-stress Biot two-phase isotropic medium elastic wave equation in order to separate pure fast and slow compress waves and pure shear wave in full wave field of two-phase medium.Feasibility of the method is demonstrated with divergence and curl theory.In a high-order staggered-grid finite-difference scheme forward simulating operator is constructed.PML absorbing boundary condition and stability condition are derived.Isotropic and heterogeneous layered two-phase medium models are tested.Full elastic wave field,completely separated pure compress wave and pure shear wave of the solid fluid phase components are obtained.Boundary absorbing effect is perfect,and numerical precision is high.It shows that the fast compress wave and slow compress wave are coupled which can't be separated.They belong to pure compress wave fields.Energy of slow compress wave in fluid phase is greater than that in solid phase which is important in understanding propagating laws and validating elastic wave theory for two-phase medium.

Key words: Biot two-phase isotropic medium, equivalent wave field separation numerical simulation equation, pure fast&low p wave and s wave, PML absorbing boundary condition, solid phase and fluid phase

中图分类号: