计算物理 ›› 2012, Vol. 29 ›› Issue (3): 433-438.

• 论文 • 上一篇    下一篇

MRM-BEM本征值计算中波数k初始值的预估算法

李纪三1,2, 王勇1, 刘文鑫1   

  1. 1. 中国科学院电子学研究所中国科学院高功率微波源与技术重点实验室, 北京, 100190;
    2. 中国科学院研究生院, 北京, 100039
  • 收稿日期:2011-07-12 修回日期:2011-12-06 出版日期:2012-05-25 发布日期:2012-05-25
  • 作者简介:李纪三(1983-),男,博士生,主要从事边界元及计算电磁学研究,E-mail:lijisanl45@163.com
  • 基金资助:
    国家自然科学基金(10905032)资助项目

An Optimization for Eigenvalue Problems with Multiple Reciprocity Boundary Element Method

LI Jisan1,2, WANG Yong1, LIU Wenxin1   

  1. 1. Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100139, China
  • Received:2011-07-12 Revised:2011-12-06 Online:2012-05-25 Published:2012-05-25

摘要: 利用基于多重互易的边界元法计算二维声学谐振腔的本征值和本征频率.通过搜索包含未知波数k的高阶行列式值的0点,来确定系统的本征值.基于波的传播原理,提出一种波数k初始值的粗略估计算法.计算了几种模型的估计算法的效率.研究多重互易边界元法基本解的阶数对结果精度的影响,发现基本解至少采用七重互易结果才收敛.数值结果与解析解和文献符合的很好,证明了方法的有效性和可靠性.

关键词: 边界元, 多重互易法, 本征值, 优化算法

Abstract: A boundary element method (BEM) based on multiple reciprocity method(MRM) is employed to solve eigenvalue and eigenfrequency of a two-dimensional linear acoustic cavity.By direct searching of the zero-points of determination of a matrix,we determine eigenfrequency of the system.An effective estimation for the first wave-number was suggested based on the principle of wave propagation.Estimation efficiency of several models is calculated.We evaluated fundamental solution's order and found that more than seven reciprocity are needed.Numerical results agree well with analysis and other literature.Estimation for the first wave-number is effective and correct.

Key words: MRM, BEM, eigenvalue, optimization

中图分类号: