计算物理 ›› 2014, Vol. 31 ›› Issue (1): 1-10.

• 论文 •    下一篇

RKDG有限元法求解一维拉格朗日形式的Euler方程

李珍珍1,2, 蔚喜军3, 赵国忠4, 冯涛1,2   

  1. 1. 中国科学技术大学 数学科学学院, 合肥 230026;
    2. 中国工程物理研究院研究生部, 北京 100088;
    3. 北京应用物理与计算数学研究所计算物理实验室, 北京 100088;
    4. 包头师范学院数学科学学院, 包头 014030
  • 收稿日期:2013-01-25 修回日期:2013-07-15 出版日期:2014-01-25 发布日期:2014-01-25
  • 作者简介:李珍珍(1985-),女,博士生,从事计算流体力学研究.E-mail:lyzhen@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金(11171038,11261035);中国工程物理研究院科学技术发展基金(2013A0202011);内蒙古自治区高等学校科学研究重点项目基金(NJZZ12198);内蒙古自治区自然科学基金(2012MS0102)资助项目

A RKDG Finite Element Method for Lagrangian Euler Equations in One Dimension

LI Zhenzhen1,2, YU Xijun3, Zhao Guozhong4, Feng Tao1,2   

  1. 1. School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China;
    2. Graduate School, China Academy of Engineering Physics, Beijing 100088, China;
    3. National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
    4. Faculty of Mathematics, Baotou Teachers College, Baotou 014030, China
  • Received:2013-01-25 Revised:2013-07-15 Online:2014-01-25 Published:2014-01-25

摘要: 描述一种新的求解Euler方程的拉格朗日格式,该格式用Runge-Kutta Discontinuous Galerkin(RKDG)方法在拉格朗日坐标系求解Euler方程,剖分网格随流体运动.新格式不仅保证流体的质量、动量和能量守恒,而且能够在时间和空间上同时达到二阶精度.数值算例表明在一维情况,随着拉氏网格的移动和改变,格式在时间和空间上仍保持二阶精度,并且没有数值震荡.

关键词: 拉格朗日格式, Euler方程, RKDG有限元方法, 一维守恒格式

Abstract: We present a Lagrangian scheme for one-dimensional Euler equations.The scheme uses Runge-Kutta discontinuous Galerkin (RKDG) finite element method to solve Euler equations under Lagrangian framework.The mesh moves with fluid flow.The scheme is conservative for density,momentum and total energy.It achieves second-order accuracy both in space and time.Numerical tests are presented to demonstrate accuracy and non-oscillatory properties of the scheme.

Key words: Lagrangian scheme, Euler equations, RKDG finite element method, one-dimensional conservative scheme

中图分类号: