计算物理 ›› 2014, Vol. 31 ›› Issue (4): 479-485.

• 研究论文 • 上一篇    下一篇

粒子群及遗传算法在相对论返波管中的应用

王辉辉, 刘大刚, 蒙林, 刘腊群   

  1. 电子科技大学物理电子学院, 成都 610054
  • 收稿日期:2013-07-13 修回日期:2013-12-05 出版日期:2014-07-25 发布日期:2014-07-25
  • 作者简介:王辉辉(1987-), male, PhD, major in computational plasmas,E-mail:whhnjznl@163.com
  • 基金资助:
    Supported by the National Natural Science Foundation of China (Grant No.11175040)

Particle Swarm Optimization and Genetic Algorithm for a Relativistic Backward Wave Oscillator

WANG Huihui, LIU Dagang, MENG Lin, LIU Laqun   

  1. School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Received:2013-07-13 Revised:2013-12-05 Online:2014-07-25 Published:2014-07-25
  • Supported by:
    Supported by the National Natural Science Foundation of China (Grant No.11175040)

摘要: 在全三维粒子模拟软件CHIPIC平台上,分别开发了粒子群及基因算法模块.以相对论返波管为例,采用三种不同类型的参数(连续参数、离散参数、混合参数),对粒子群及基因算法进行比较.优化结果表明:粒子群算法的收敛速度更快,在有限的迭代步数内得到的目标结果也更优良,总体表现优于基因算法.

关键词: 粒子群优化, 基因算法, 相对论返波管, 粒子模拟

Abstract: Based on platform of three-dimensional particle-in-cell (PIC), CHIPIC, modules of particle swarm optimization (PSO) and genetic algorithm (GA) are designed to optimize a relativistic backward wave oscillator (RBWO), respectively. Comparisons of PSO and GA are implemented in three kinds of parameters of RBWO:Continuous parameter, discrete parameter, and mix parameters. It shows that performances of PSO are better than that of GA. PSO has higher optimization accuracy and convergence rate than GA.

Key words: particle swarm optimization, genetic algorithm, relativistic backward wave oscillator, particle-in-cell

中图分类号: