计算物理 ›› 2017, Vol. 34 ›› Issue (5): 563-573.

所属专题: 超强激光等离子体相互作用的数值模拟

• 研究论文 • 上一篇    下一篇

面向结构网格自适应并行计算的矩形区域求差集快速算法

刘旭, 徐小文, 张爱清   

  1. 北京应用物理与计算数学研究所, 北京 100094
  • 收稿日期:2016-07-11 修回日期:2016-12-27 出版日期:2017-09-25 发布日期:2017-09-25
  • 作者简介:刘旭(1981-),男,博士,副研究员,从事并行计算研究与软件研发,E-mail:liu_xu@iapcm.ac.cn
  • 基金资助:
    国家自然科学基金(91430218, 61370067)、国家973计划项目(2011CB309702)及国家863计划项目(2012AA01A309)资助

A Fast Box Set Subtraction Algorithm for Parallel Structured Adaptive Mesh Refinement Applications

LIU Xu, XU Xiaowen, ZHANG Aiqing   

  1. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • Received:2016-07-11 Revised:2016-12-27 Online:2017-09-25 Published:2017-09-25

摘要: 结构网格自适应程序需要使用矩形区域求差集算法计算网格层间数据依赖关系和网格层嵌套关系.原有的矩形区域求差集算法时间复杂度较高,成为该类应用大规模并行计算可扩展性能瓶颈.本文利用分而治之的方法,构造近似线性时间复杂度的矩形区域求差集快速算法,并利用区域分解实现该算法的并行计算.分别针对规则矩形区域和多层自适应网格的非规则矩形区域求差集问题,验证该算法的效率.结果表明,该算法具有近似线性计算复杂度,对于大规模计算问题,加速效果显著.

关键词: 并行计算, 结构网格自适应, 矩形区域求差集, 线性计算复杂度

Abstract: Box set subtraction is widely used in SAMR to compute data dependency and nested restriction. Traditional box set subtraction algorithms suffer from high time complexity, which often dominates execution time for large scale SAMR simulations. In this paper, a divide and conquer box set subtraction algorithm with linear time complexity was proposed, and enhanced by domain decomposition parallelization. Experiment results on regular box set and irregular box set of SAMR application verify linear time complexity property. And for large scale problems, our algorithm shows great improvement on computing time.

Key words: parallel computing, structured adaptive mesh refinement, box set subtraction algorithm, linear time complexity

中图分类号: