计算物理 ›› 2007, Vol. 24 ›› Issue (2): 211-216.

• 论文 • 上一篇    下一篇

波动方程角度域偏移成像

陈生昌1, 马在田2, WU Ru-Shan3   

  1. 1. 浙江大学地球科学系, 浙江 杭州 310027;
    2. 同济大学海洋与地球科学院, 上海 200092;
    3. Modeling and Imaging Laboi-atory, IGPP, University of California, Santa Cruz, CA 95064, USA
  • 收稿日期:2005-11-08 修回日期:2006-02-21 出版日期:2007-03-25 发布日期:2007-03-25
  • 作者简介:陈生昌(1965-),男,江西永新,副教授,理学博士,主要从事地震波传播与偏移成像及速度分析的方法理论及应用研究,浙江大学玉泉校区地球科学系310027.
  • 基金资助:
    国家高技术研究发展(863)计划项目(2003AA611020/01);海洋地质国家重点实验室开放课题(2005007)资助项目

Wave Equation Migration in Angle Domain

CHEN Shengchang1, MA Zaitian2, WU Ru-Shan3   

  1. 1. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China;
    2. School of Ocean and Earth Sciences, Tonal University, Shanghai 200092, China;
    3. Modeling and Imaging Laboratory, IGPP, University of California, Santa Cruz, CA 95064, USA
  • Received:2005-11-08 Revised:2006-02-21 Online:2007-03-25 Published:2007-03-25

摘要: 在共炮集数据的波动方程深度偏移成像中,利用常规的波场传播算子进行检波点波场和震源波场的向下传播,在各个深度层借助波场的窗口Fourier框架展开,得到局部角度域的检波点波场和震源波场,然后应用偏移成像原理,提出了共炮集数据的波动方程角度域偏移成像方法.通过角度域偏移成像,可以得到地下成像点处的角度域成像矩阵以及共地层倾角偏移成像剖面和共反射角偏移成像剖面.也可为基于偏移成像的后续处理方法技术,如振幅随角度变化分析处理、角度域共成像道集提取和角度域速度分析,提供基础资料.以陡倾角模型和国际标准的Marmousi模型为数值试验例子,验证了波动方程角度域偏移成像方法的正确性和有效性.

关键词: 波动方程, 窗口Fourier框架展开, 局部角度域, 偏移成像, 地层倾角, 反射角

Abstract: In the wave equation depth migration of common shot gathers,the windowed Fourier frame expansion of seismic wavefield is used to obtain the receiver and source wavefields in the local angle domain.We propose a wave equation migration method in angle domain for common shot gathers seismic data.With migration in angle domain,the image matrix in local angle domain,the migration sections with different common-dip angles and reflection angles at imaging points are obtained.It provides fundamental data for processing approaches based on migration,such as analysis of amplitude versus angle,extraction of common image gather in angle domain and velocity analysis in angle domain. Numerical examples in a steep dip model and an international standard Marmousi model show that the wave equation migration method in angle domain is correct and effective.

Key words: wave equation, windowed Fourier frame expansion, local angle domain, migration, stratum dip angle, reflection angle

中图分类号: