计算物理 ›› 2004, Vol. 21 ›› Issue (3): 333-338.

• 研究论文 • 上一篇    下一篇

任意阶显式精细积分多步法的常用形式及其高阶次数值计算

闫海青, 唐晨, 张皞, 刘铭, 张桂敏   

  1. 天津大学应用物理系, 天津 300072
  • 收稿日期:2003-02-08 修回日期:2003-08-05 出版日期:2004-05-25 发布日期:2004-05-25
  • 作者简介:闫海青(1962-),男,辽宁,副教授,硕士,主要从事凝聚态物理与计算物理方面的研究工作.
  • 基金资助:
    上海交通大学振动、冲击、噪声国家重点实验室基金(VSN-2003-03)资助项目

Common Formulae for Free-order Explicit Multistep Method of Precise Time Integration and the Higher Order Numerical Simulation

YAN Hai-qing, TANG Chen, ZHANG Hao, LIU Ming, ZHANG Gui-min   

  1. Department of Applied Physics, Tianjin University, Tianjin 300072, China
  • Received:2003-02-08 Revised:2003-08-05 Online:2004-05-25 Published:2004-05-25

摘要: 基于任意阶显式精细积分多步法的一般公式,给出其几种常用形式,并实现了高阶次数值计算,将新算法应用于射线方程和双原子系统经典轨迹数值计算中.数值计算结果表明任意阶显式精细积分多步法是一种高精度、高效率、稳定性较好的方法,并且可方便地进行高阶次的运算.

关键词: 任意阶显式精细积分多步法, 高阶次数值计算, 经典轨迹, 稳定性分析

Abstract: Common formulae for the free-order explicit multistep method of precise time integration are proposed. When the higher order explicit algorithms of precise time integration are applied for calculating the ray equation and the classical trajectories of diatomic system, the effect is admirable. The numerical results reveal that the pressent method is higher accurated and efficient, capable of keeping computational stability for long time simulation, and suitable for higher order numerical computation.

Key words: free-order multi-step method of precise integration, higher order numerical computation, classical trajectory stability analysis

中图分类号: