计算物理 ›› 1998, Vol. 15 ›› Issue (5): 513-530.

• 论文 •    下一篇

自适应有限元方法和后验误差估计

蔚喜军1, 余德浩2, 包玉珍1   

  1. 1. 北京应用物理与计算数学研究所, 计算物理实验室 100088;
    2. 中科院计算数学与科学工程计算研究所科学与工程计算国家重点实验室, 北京 100080
  • 收稿日期:1997-07-18 出版日期:1998-09-25 发布日期:1998-09-25
  • 作者简介:蔚喜军,男,39,副研究员,博士,北京8009信箱26分箱100088
  • 基金资助:
    The project is supported by the National Natural Science Foundation of China and the Foundation of China Academy of Engineering Physics

THE ADAPTIVE FINITE ELEMENT METHODS AND A POSTERIORI ERROR ESTIMATES

Yu Xijun1, Yu Dehao2, Bao Yuzhen1   

  1. 1. Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics, Beijing 100088;
    2. State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing, Beijing 100080
  • Received:1997-07-18 Online:1998-09-25 Published:1998-09-25
  • Supported by:
    The project is supported by the National Natural Science Foundation of China and the Foundation of China Academy of Engineering Physics

摘要: 自适应有限元方法是科学研究和工程设计领域中非常有效的一种求解偏微分方程的数值计算方法。这种方法是为了以尽可能小的代价取得尽可能好的计算效果。后验误差估计是实现自适应有限元计算的关键性手段。文章综合介绍了自适应有限元方法和后验误差估计在求解椭圆型方程、抛物型方程和双曲型方程方面所取得的比较新的成就。

关键词: 自适应有限元方法, 椭圆型方程, 抛物型方程, 双曲型方程

Abstract: The adaptive finite element methods are very effective for solving partial differential equations in scientific researches and engineering designs.By using these methods the best possible results can be obtained at less computational costs.A posteriori error estimates serve as a key to realize the adaptive finite element computation.This paper surveys the progress in the adaptive finite element methods and a posteriori error estimates for solving elliptic equations,parabolic equations and hyperbolic equations.

Key words: Adaptive finite element methods, a posteriori error estimates, elliptic equations, parabolic equations, hyperbolic equations

中图分类号: