计算物理 ›› 1988, Vol. 5 ›› Issue (4): 473-477.

• 论文 • 上一篇    下一篇

一个高精度数值积分公式

吴新元   

  1. 南京大学
  • 收稿日期:1987-12-08 出版日期:1988-12-25 发布日期:1988-12-25

A HIGHER ORDER ACCURACY NUMERICAL QUADRATURE RULE

Wu Xin-yuan   

  1. Najing University
  • Received:1987-12-08 Online:1988-12-25 Published:1988-12-25

摘要: 本文讨论了一个具有高精度的求积公式abf(x)dx)=(b-a)(7f(a)+16f((a+b)/(2))+7f(b)+(b-a)(f'(a)-f'(b)))/30+E[f]其中E[f]=((b-a)7/(604800))f(6)(ξ),a<ξ<b及其复合公式ab(f(x)dx)=(b-a)((7f(a+2ih)+7f(a+2ih)+16???19880410-2???f(a+2i-1h)+(b-a)(f'(a)-f(b))/2n)/30n+En[f]这里En[f]=((b-a)7)/(604800n6)f(6)(η),a< η< bh=(b-a)/2n它具有辛普生公式的一切优点,但精确度比辛普公式高2阶。数值试验表明,这是一个非常有效的求积公式。

Abstract: This paper discusses the following quadrature rule with higher degree of accuracy abf(x)dx)=(b-a)(7f(a)+16f((a+b)/(2))+7f(b)+(b-a)(f'(a)-f'(b)))/30+E[f] Where E[f]=((b-a)7/(604800))f(6)(ξ),a<ξ<b andits Compositrule are presented aswell:ab(f(x)dx)=(b-a)((7f(a+2ih)+7???19880410-2???f(a+2ih)+16f(a+2i-1h)+(b-a)(f'(a)-f(b))/2n)/30n+En[f] Where En[f]=((b-a)7)/(604800n6)f(6)(η),a< η< b h=(b-a)/2n which possess the all advantages of simpsons rule, but the degree of accuracy isincreased by two order than Simpson's rule.The numerical tests that the quadrature formula of this paper is very efficient.