计算物理 ›› 1985, Vol. 2 ›› Issue (2): 205-213.

• 论文 • 上一篇    下一篇

数值模拟水环境污染的一种L稳定的分步杂交方法

吴江航   

  1. 北京大学, 水利水电科学研究院
  • 收稿日期:1984-11-02 出版日期:1985-06-25 发布日期:1985-06-25

A HYBRID METHOD OF FRACTIONAL STEQS WITH L STABILITY FOR NUMERICAL MODELLINGOF AQUATIC ENVIRONMENTS

Mu Jiang-hang   

  1. Peking University, Institute of Water Conservancy and Hydroelectric Power Research
  • Received:1984-11-02 Online:1985-06-25 Published:1985-06-25

摘要: 本文提出了一种数值求解对流扩散方程的分步杂交方法。在不规则的三角形网格上,采用迎风离散格式或改型特征线方法处理对流算子;采用集中质量的有限元方法处理扩散算子。详细分析了这种算法的稳定性同题,在数学上严格证明了在满足①Δt≤min((2d)/v,(d2)/(3K)),其中d是三角形网格中最短垂线的长度,V和K分别为流场中的最大速度和扩散系数。②所有三角形的内角θ≤π/2的条件下,整个计算格式是L稳定的,从而保证了在海洋环境和水质的数值模拟中海水的盐度、污染物的浓度和核电站冷却水系统中的超温不会出现负值。应用非线性的对流扩散方程对此方法的精度和收敛性进行了检验。通过数值解与精确解的比较,表明本方法的数值耗散很小,用改型特征线方法处理对流算子较迎风离散格式有更高的精度;两种处理对流算子的方法都没有伪振荡现象发生。本方法由于具有算法简单、L稳定、计算网格灵活等优点,可推广使用于实际的海洋环境(潮波、海流、海洋污染)、港口和海湾的数值模拟以及不可压粘性流和对流传热同题的数值计算。

Abstract: A new method for numerical modelling of aquatic environments is presented in this paper. It is based on a hybrid method of fractional steps using triangular grids and with L-stability, An upwind discretization scheme or a modified characteristics procedurs is used for convection operator,the lumping finite element technique for diffusion calculation. Stability analysis proved in detail shows that the scheme is L-stable under conditions. (1)Δ≤min((2d)/v,(d2)/(3k)) where V=max√u2+v2, d=the minimum perpendicular length of all the triangles, k=diffusivity,and(2)all the angles of triangles are less than or equal to π/2.It is shown also that the L∞-stability implies the nonnegativity of numerical solutions for the concentration or for the excess temperature. To test numerically the convergence and accuracy of this method for nonlinear problem the method was run for a one-dimenslonal nonlinear convection diffusion equation with known analybic soluticn.It can be concluded that the numerical damping effect in computation is insignificant,the modified characteristics procedure for treatment of the convection has more accuracy than the upwind scheme. L∞-stability, simplicity and flexibility in handling complex geometries make this method applicable to many practical problems.