计算物理 ›› 1984, Vol. 1 ›› Issue (2): 125-132.

• 论文 •    下一篇

ADI方法求解Navier-Stokes方程的一个改进格式

陆张宁   

  1. 中国科学院力学研究所
  • 收稿日期:1983-12-03 出版日期:1984-12-25 发布日期:1984-12-25

A IMPROVED ADI SCHEME FOR SOLVING NAVIER-STOKES EQUATIONS

LU ZHANG-NING   

  1. Institute of Mechanics, Academia Sinica
  • Received:1983-12-03 Online:1984-12-25 Published:1984-12-25

摘要: ADI方法常被用来计算不可压缩Navier-Stokes方程[1]。在处理涡度方程的非线性项和涡度在壁面上的条件时,通常采用滞后的方法对涡度方程和流函数方程分别求解。然而,非线性项的滞后破坏了ADI方法的完全二阶精度;涡度方程和流函数方程分别求解减弱了两个方程的耦合性;涡度壁面条件的滞后则破坏了方法的完全隐式。本文在应用ADI方法求解涡度方程和流函数方程时应用了一种交替线性化的技术,对涡度方程和流函数方程耦合求解,内点和边界点上的涡度和流函数值同时求出。因此,ADI方法保持了完全的二阶精度,避免了上面所提到的问题。作者应用这一方法计算了雷诺数Rθ等于1,10,100,500,1000时的二维方腔流动(空间步长h=1/20)。计算结果表明:这一方法保持了通常ADI方法的优点,可以应用大的时间步长。最后补充计算了雷诺数Rθ=2000的二维方腔流动。

Abstract: ADI method is often used to calculate imcompressible Navier-Stokes equations[1]. In the ordinary ADI method, the nonlinear con-vective terms and noslip condition are delayed and streamfunction-vorticity Navier-Stokes equations are uncoupled. So it can't keep comlete two-order accuracy and complete implicit. In this paper, a "alternating linearize" technique for the nonlinear terms is presented, so streamfunction-vorticity Navier-Stokes equations can be coupled and boundary points and inner points are simultaneously solving.This method seems to keep complete two-order accuracy. It is utilized to calculate the "two-dimensional cavity" flow problem at Reynolds number 1, 10, 100, 500, 1000 and 2000. The result shows that the improved ADI scheme has the advantage of unimproved one.