计算物理 ›› 2023, Vol. 40 ›› Issue (4): 511-518.DOI: 10.19596/j.cnki.1001-246x.8588

• • 上一篇    下一篇

基于图像分割的盐丘识别算法研究

娄莉(), 张丰侠*(), 韩柏迅   

  1. 西安石油大学计算机学院, 陕西 西安 710065
  • 收稿日期:2022-07-08 出版日期:2023-07-25 发布日期:2023-10-13
  • 通讯作者: 张丰侠
  • 作者简介:

    娄莉(1970-), 女, 博士, 副教授, 硕士生导师, 研究方向为图像处理与模式识别、信号与信息处理, E-mail:

  • 基金资助:
    陕西省2021年重点研发计划(2021GY-138); 陕西省教育厅科研计划(21JK0847); 西安石油大学研究生创新与实践能力培养项目(YCS21213256)

Research on Salt Dome Identification Algorithm Based on Image Segmentation

Li LOU(), Fengxia ZHANG*(), Boxun HAN   

  1. School of Computer Science, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
  • Received:2022-07-08 Online:2023-07-25 Published:2023-10-13
  • Contact: Fengxia ZHANG

摘要:

提出一种基于图像分割的盐丘识别方法实现自动化、高精度地识别盐丘。该方法在原始U-Net网络基础上进行迁移学习, 加载预训练模型的SENet用作编码器的主干网络, 对地震图像中的盐丘特征进行增强, 突出图像中的重要特征, 抑制不重要的特征。针对盐丘分割任务特点, 引入Lovasz-Softmax损失函数进行标准化实验, 提升对盐丘边界的分割效果。在TGS盐体识别挑战赛提供数据集上的实验结果表明: 该方法最终在测试集上取得了97.5%的准确率和87.26%的交并比, 与UNet、USKNet相比交并比分别提升了12.59个百分点和1.6个百分点。

关键词: 盐丘识别, U-Net, SENet, 图像分割, Lovasz-Softmax损失

Abstract:

Salt dome identification is of great significance for oil and gas exploration. Many important resources are located near the salt dome, but manual identification is time-consuming, labor-intensive and subjective. To solve this problem, this paper proposes a salt dome identification method based on image segmentation to realize automatic and high-precision identification of salt dome. The method is based on the original U-Net network for migration learning. The SENet loaded with the pre training model is used as the backbone network of the encoder. The salt dome features in the seismic image are enhanced, the important features in the image are highlighted, and the unimportant features are suppressed. In addition, according to the characteristics of salt dome segmentation task, Lovasz Softmax loss function is introduced for standardization experiment to improve the segmentation effect of salt dome boundary. The experimental results on the data set provided by the TGS salt dome identification challenge show that the method has finally achieved 97.5% Accuracy and 87.26% IoU on the test set. Compared with UNet and USKNet, the IoU has increased by 12.59 percentage points and 1.6 percentage points, respectively, reflecting the effectiveness and universality of this method.

Key words: salt dome identification, U-Net, SENet, image segmentation, Lovasz-Softmax loss