计算物理 ›› 2024, Vol. 41 ›› Issue (4): 426-439.DOI: 10.19596/j.cnki.1001-246x.8732

•   • 上一篇    下一篇

波动方程的高精度数值解方法

袁洪旺1(), 王希胤2,*(), 李金2,*()   

  1. 1. 华北理工大学理学院数学系, 河北 唐山 063200
    2. 华北理工大学理学院,河北 唐山 063200
  • 收稿日期:2023-03-20 出版日期:2024-07-25 发布日期:2024-08-24
  • 通讯作者: 王希胤,李金
  • 作者简介:袁洪旺,男,硕士,研究方向为应用数理统计,E-mail:2534623285@qq.com
  • 基金资助:
    国家自然科学基金(11771398);河北省自然科学基金(A2019209533)

High Accuracy Numerical Solution of Wave Equation

Hongwang YUAN1(), Xiyin WANG2,*(), Jin LI2,*()   

  1. 1. Department of Mathematics, College of Science, North China University of Science and Technology, Tangshan, Hebei 063200, China
    2. School of Science, North China University of Science and Technology, Tangshan, Hebei 063200, China
  • Received:2023-03-20 Online:2024-07-25 Published:2024-08-24
  • Contact: Xiyin WANG, Jin LI

摘要:

本文提出重心Lagrange插值配点法求解(2+1)维波动方程和(3+1)维波动方程。介绍了重心Lagrange插值法并且给出配点法的矩阵格式。波动方程的解函数和初边值条件均用Lagrange插值近似,利用配点法得到离散方程,获得波动方程的矩阵表达式。分别用附加法和置换法施加波动方程的初边值条件。数值算例表明:重心Lagrange插值配点法求解波动方程具有较高的计算精度和计算效率。

关键词: 重心Lagrange插值, 波动方程, 配点法, 矩阵格式

Abstract:

A barycentric Lagrange interpolation collocation method is proposed to solve the three-dimensional and four-dimensional wave equations. Firstly, the barycentric Lagrange interpolation method is introduced and the matrix format of the collocation method is given. Secondly, the solution function and initial boundary conditions of the wave equation are approximated by Lagrange interpolation. The discrete equation is obtained by collocation method, and the matrix expression of the wave equation is obtained. Finally, the initial and boundary conditions of the wave equation are imposed by the addition method and the replacement method respectively. Numerical examples show that the barycentric Lagrange interpolation collocation method has high computational accuracy and efficiency.

Key words: barycentric Lagrange interpolation, wave equation, collocation method, matrix scheme

中图分类号: