计算物理 ›› 2024, Vol. 41 ›› Issue (4): 426-439.DOI: 10.19596/j.cnki.1001-246x.8732
收稿日期:
2023-03-20
出版日期:
2024-07-25
发布日期:
2024-08-24
通讯作者:
王希胤,李金
作者简介:
袁洪旺,男,硕士,研究方向为应用数理统计,E-mail:2534623285@qq.com
基金资助:
Hongwang YUAN1(), Xiyin WANG2,*(
), Jin LI2,*(
)
Received:
2023-03-20
Online:
2024-07-25
Published:
2024-08-24
Contact:
Xiyin WANG, Jin LI
摘要:
本文提出重心Lagrange插值配点法求解(2+1)维波动方程和(3+1)维波动方程。介绍了重心Lagrange插值法并且给出配点法的矩阵格式。波动方程的解函数和初边值条件均用Lagrange插值近似,利用配点法得到离散方程,获得波动方程的矩阵表达式。分别用附加法和置换法施加波动方程的初边值条件。数值算例表明:重心Lagrange插值配点法求解波动方程具有较高的计算精度和计算效率。
中图分类号:
袁洪旺, 王希胤, 李金. 波动方程的高精度数值解方法[J]. 计算物理, 2024, 41(4): 426-439.
Hongwang YUAN, Xiyin WANG, Jin LI. High Accuracy Numerical Solution of Wave Equation[J]. Chinese Journal of Computational Physics, 2024, 41(4): 426-439.
节点数m=n=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
9 | 9.704 1×10-3 | 1.450 6×10-3 | 9.801 2×10-3 | 1.465 1×10-3 | |||
11 | 1.021 9×10-4 | 6.56 | 1.141 1×10-5 | 2.373 0×10-4 | 5.37 | 2.649 9×10-5 | |
13 | 9.277 3×10-7 | 6.78 | 8.116 6×10-8 | 3.526 0×10-6 | 6.07 | 3.084 9×10-7 | |
15 | 8.489 6×10-9 | 6.77 | 6.021 9×10-10 | 3.623 9×10-8 | 6.60 | 2.570 5×10-9 | |
17 | 5.010 3×10-11 | 7.40 | 2.956 7×10-12 | 1.781 3×10-8 | 1.02 | 1.051 2×10-9 | |
19 | 3.873 4×10-11 | 0.37 | 1.940 3×10-12 | 2.787 4×10-8 | -0.6 | 1.396 3×10-9 |
表1 不同节点数边界条件施加方法为附加法与置换法的绝对误差、相对误差和收敛阶
Table 1 Absolute error, relative error and the order of convergence of additional method and displacement method
节点数m=n=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
9 | 9.704 1×10-3 | 1.450 6×10-3 | 9.801 2×10-3 | 1.465 1×10-3 | |||
11 | 1.021 9×10-4 | 6.56 | 1.141 1×10-5 | 2.373 0×10-4 | 5.37 | 2.649 9×10-5 | |
13 | 9.277 3×10-7 | 6.78 | 8.116 6×10-8 | 3.526 0×10-6 | 6.07 | 3.084 9×10-7 | |
15 | 8.489 6×10-9 | 6.77 | 6.021 9×10-10 | 3.623 9×10-8 | 6.60 | 2.570 5×10-9 | |
17 | 5.010 3×10-11 | 7.40 | 2.956 7×10-12 | 1.781 3×10-8 | 1.02 | 1.051 2×10-9 | |
19 | 3.873 4×10-11 | 0.37 | 1.940 3×10-12 | 2.787 4×10-8 | -0.6 | 1.396 3×10-9 |
节点数m=n= | 三点中心差分法 | ||
Ea | rate | Er | |
4 | 2.087 7×10-2 | 1.443 9×10-2 | |
9 | 5.098 7×10-3 | 2.03 | 1.322 4×10-3 |
18 | 2.541 7×10-3 | 1.00 | 3.102 2×10-4 |
36 | 1.270 9×10-3 | 1.00 | 7.534 0×10-5 |
64 | 7.118 6×10-4 | 0.84 | 2.344 5×10-5 |
表2 三点中心差分法在t=1时刻的绝对误差、相对误差和收敛阶
Table 2 Absolute error, relative error and the order of convergence of three center difference method at t=1
节点数m=n= | 三点中心差分法 | ||
Ea | rate | Er | |
4 | 2.087 7×10-2 | 1.443 9×10-2 | |
9 | 5.098 7×10-3 | 2.03 | 1.322 4×10-3 |
18 | 2.541 7×10-3 | 1.00 | 3.102 2×10-4 |
36 | 1.270 9×10-3 | 1.00 | 7.534 0×10-5 |
64 | 7.118 6×10-4 | 0.84 | 2.344 5×10-5 |
图1 当m = n = h = 19,边界条件施加方法为附加法,h = 10时的(a)数值解和(b)解析解
Fig.1 (a)Numerical solution and (b) analytical solution of additional method at h = 10 with m = n = h = 19
图3 当m = n = h = 19,边界条件施加方法为置换法,h = 10的(a)数值解和(b)解析解
Fig.3 (a)Numerical solution and (b) analytical solution of displacement method at h=10 with m = n = h = 19
节点数m=n=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
9 | 6.718 7×10-4 | 2.157 3×10-5 | 7.267 6×10-4 | 2.333 6×10-5 | |||
11 | 3.321 9×10-6 | 7.66 | 8.174 0×10-8 | 8.275 7×10-6 | 6.46 | 2.036 4×10-7 | |
13 | 1.856 5×10-8 | 7.48 | 3.644 2×10-10 | 6.241 0×10-8 | 7.05 | 1.225 1×10-9 | |
15 | 1.077 7×10-10 | 7.43 | 1.738 3×10-12 | 4.258 6×10-8 | 0.55 | 6.868 9×10-10 | |
17 | 1.227 3×10-10 | -0.2 | 1.664 1×10-12 | 1.977 4×10-7 | -2.2 | 2.681 2×10-9 | |
19 | 3.116 7×10-10 | -1.3 | 3.616 9×10-12 | 1.413 5×10-7 | 0.50 | 1.640 4×10-9 |
表3 不同节点数边界条件施加方法为附加法与置换法的绝对误差、相对误差和收敛阶
Table 3 Absolute error, relative error and the order of convergence of additional method and displacement method
节点数m=n=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
9 | 6.718 7×10-4 | 2.157 3×10-5 | 7.267 6×10-4 | 2.333 6×10-5 | |||
11 | 3.321 9×10-6 | 7.66 | 8.174 0×10-8 | 8.275 7×10-6 | 6.46 | 2.036 4×10-7 | |
13 | 1.856 5×10-8 | 7.48 | 3.644 2×10-10 | 6.241 0×10-8 | 7.05 | 1.225 1×10-9 | |
15 | 1.077 7×10-10 | 7.43 | 1.738 3×10-12 | 4.258 6×10-8 | 0.55 | 6.868 9×10-10 | |
17 | 1.227 3×10-10 | -0.2 | 1.664 1×10-12 | 1.977 4×10-7 | -2.2 | 2.681 2×10-9 | |
19 | 3.116 7×10-10 | -1.3 | 3.616 9×10-12 | 1.413 5×10-7 | 0.50 | 1.640 4×10-9 |
图5 当m = n = h = 19,边界条件施加方法为附加法,h = 1的(a)数值解和(b)解析解
Fig.5 (a)Numerical solution and (b) analytical solution of additional method at h = 1 with m = n = h = 19
图7 当m = n = h = 15,边界条件施加方法为置换法,h = 1的(a)数值解和(b)解析解
Fig.7 (a) Numerical solution and (b) analytical solution of displacement method at h = 1 with m = n = h = 15
节点数m=n=s=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
7 | 5.578 9×10-1 | 7.490 9×10-2 | 5.069 6×10-2 | 6.807 1×10-3 | |||
9 | 5.774 6×10-2 | 3.27 | 4.728 8×10-3 | 2.031 4×10-2 | 1.32 | 1.663 5×10-3 | |
11 | 1.259 3×10-3 | 5.52 | 6.939 6×10-5 | 1.143 6×10-3 | 4.15 | 6.302 0×10-5 | |
13 | 2.137 9×10-5 | 5.88 | 8.465 9×10-7 | 3.270 5×10-5 | 5.13 | 1.295 1×10-6 | |
15 | 2.961 0×10-7 | 6.17 | 8.830 6×10-9 | 5.837 7×10-7 | 5.81 | 1.741 0×10-8 | |
17 | 2.488 4×10-9 | 6.89 | 5.789 9×10-11 | 7.225 8×10-9 | 6.34 | 1.681 2×10-10 |
表4 不同节点数边界条件施加方法为附加法与置换法的绝对误差、相对误差和收敛阶
Table 4 Absolute error, relative error and the order of convergence with additional method and displacement method
节点数m=n=s=h | 附加法 | 置换法 | |||||
Ea | rate | Er | Ea | rate | Er | ||
7 | 5.578 9×10-1 | 7.490 9×10-2 | 5.069 6×10-2 | 6.807 1×10-3 | |||
9 | 5.774 6×10-2 | 3.27 | 4.728 8×10-3 | 2.031 4×10-2 | 1.32 | 1.663 5×10-3 | |
11 | 1.259 3×10-3 | 5.52 | 6.939 6×10-5 | 1.143 6×10-3 | 4.15 | 6.302 0×10-5 | |
13 | 2.137 9×10-5 | 5.88 | 8.465 9×10-7 | 3.270 5×10-5 | 5.13 | 1.295 1×10-6 | |
15 | 2.961 0×10-7 | 6.17 | 8.830 6×10-9 | 5.837 7×10-7 | 5.81 | 1.741 0×10-8 | |
17 | 2.488 4×10-9 | 6.89 | 5.789 9×10-11 | 7.225 8×10-9 | 6.34 | 1.681 2×10-10 |
节点数m=n=s= | 三点中心差分法 | ||
Ea | rate | Er | |
4 | 3.349 9×10-1 | 2.441 2×10-1 | |
9 | 2.202 1×10-1 | 0.61 | 3.690 7×10-2 |
17 | 1.579 5×10-1 | 0.48 | 9.359 0×10-3 |
31 | 1.158 1×10-1 | 0.45 | 2.672 8×10-3 |
62 | 8.132 4×10-2 | 0.51 | 6.473 3×10-4 |
表5 三点中心差分法在t=1时刻的绝对误差、相对误差和收敛阶
Table 5 Time absolute error, relative error and the order of convergence with three center difference method at t=1
节点数m=n=s= | 三点中心差分法 | ||
Ea | rate | Er | |
4 | 3.349 9×10-1 | 2.441 2×10-1 | |
9 | 2.202 1×10-1 | 0.61 | 3.690 7×10-2 |
17 | 1.579 5×10-1 | 0.48 | 9.359 0×10-3 |
31 | 1.158 1×10-1 | 0.45 | 2.672 8×10-3 |
62 | 8.132 4×10-2 | 0.51 | 6.473 3×10-4 |
1 |
汪勇, 穆鹏飞, 蔡文杰, 等. 五对角紧致差分格式优化及二维声波传播波动方程数值模拟[J]. 石油物探, 2019, 58 (4): 486- 498.
DOI |
2 | BIAZAR J , ESLAMI M . A new technique for non-linear two-dimensional wave equations[J]. Scientia Iranica, 2013, 20 (2): 359- 363. |
3 | FU Zuntao , LIU Shikuo , LIU Shida , et al. New jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations[J]. Physics Letters A, 2001, 290 (1/2): 72- 76. |
4 | 马友能, 余锦华, 汪源源. 二阶声场波动方程的非分裂完全匹配层算法[J]. 声学学报, 2013, 38 (6): 681- 686. |
5 | 王兆清, 徐子康. 基于平面问题的位移压力混合配点法[J]. 计算物理, 2018, 35 (1): 77- 86. |
6 | HAMILTON B , BILBAO S . Optimised 25-point finite difference schemes for the three-dimensional wave equation[J]. Proceedings of Meetings on Acoustics, 2017, 28 (1): 015022. |
7 | 马德堂, 朱光明. 有限元法与伪谱法混合求解弹性波动方程[J]. 地球科学与环境学报, 2004, (1): 61- 64. |
8 | 张荣培, 王迪, 蔚喜军, 等. 基于广义交替数值通量的局部间断Galerkin方法求解二维波动方程[J]. 物理学报, 2020, 69 (2): 60- 66. |
9 |
ZHANG Zan , LI Dongming , CHENG Yumin , et al. The improved element-free Galerkin method for three-dimensional wave equation[J]. Acta Mechanica Sinica, 2012, 28 (3): 808- 818.
DOI |
10 | 李坤, 黄其柏, 林立广. 二阶时域波动方程的无网格方法求解[J]. 华中科技大学学报(自然科学版), 2011, 39 (3): 26- 29. |
11 | CASULLI V . Semi-implicit finite difference methods for the two-dimensional shallow water equations[J]. Journal of Computational Physics, 1990, 86 (1): 56- 74. |
12 | CASULLI V , CHENG R T . Semi-implicit finite difference methods for three-dimensional shallow water flow[J]. International Journal for Numerical Methods in Fluids, 1992, 15 (6): 629- 648. |
13 | DEHGHAN M , MOHEBBI A . The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation[J]. Numerical Methods for Partial Differential Equations, 2008, 24 (3): 897- 910. |
14 | WEI Hui , JI Shuguan . Periodic solutions of a semilinear variable coefficient wave equation under asymptotic nonresonance conditions[J]. Science China Mathematics, 2023, 66 (1): 79- 90. |
15 | DEHGHAN M , SHOKRI A . A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions[J]. Numerical Algorithms, 2009, 52 (3): 461- 477. |
16 | 蒋长锦. 波动方程辛算法的迭代求解[J]. 计算物理, 2002, 19 (1): 13- 16. |
17 | 张文飞, 李晓江. 双参数波动方程反问题的数值解法[J]. 计算物理, 1997, (2): 2- 8. |
18 | 张大力, 刘家琦, 吴建成. 一维波动方程反问题求解的正则迭代法[J]. 计算物理, 2000, 17 (3): 326- 330. |
19 | 马燕, 王兆清, 唐炳涛. 波动问题的高精度重心有理插值配点法[J]. 山东科学, 2012, 25 (3): 80- 87. |
20 | 王兆清, 纪思源, 徐子康, 等. 不规则区域平面弹性问题的正则区域重心插值配点法[J]. 计算力学学报, 2018, 35 (2): 195- 201. |
21 | TAYLOR W J . Method of lagrangian curvilinear interpolation[J]. Journal of Research of the National Bureau of Standards, 1945, 35, 151- 155. |
22 | BERRUT J P , TREFETHEN L N . Barycentric lagrange interpolation[J]. SIAM Review, 2004, 46 (3): 501- 517. |
23 | LIU Hongyan , HUANG Jin , PAN Yubin , et al. Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equations[J]. Journal of Computational and Applied Mathematics, 2018, 327, 141- 154. |
24 | LI Jin , CHENG Yongling . Linear barycentric rational collocation method for solving heat conduction equation[J]. Numerical Methods for Partial Differential Equations, 2021, 37 (1): 533- 545. |
25 | LI Jin , SANG Yu . Linear barycentric rational collocation method for beam force vibration equation[J]. Shock and Vibration, 2021, 2021, 5584274. |
26 | LI Jin , SU Xiaoning , QU Jinzheng . Linear barycentric rational collocation method for solving telegraph equation[J]. Mathematical Methods in the Applied Sciences, 2021, 44 (14): 11720- 11737. |
[1] | 王兆清, 钱航, 李金. 移动边界问题的时空域正则区域迭代配点法[J]. 计算物理, 2021, 38(1): 16-24. |
[2] | 王磊磊, 纪乐, 马文涛. FGMs稳态热传导分析的重心Lagrange插值配点法[J]. 计算物理, 2020, 37(2): 173-181. |
[3] | 王兆清, 徐子康. 基于平面问题的位移压力混合配点法[J]. 计算物理, 2018, 35(1): 77-86. |
[4] | 刘婷, 马文涛. 重心Lagrange插值配点法求解二维双曲电报方程[J]. 计算物理, 2016, 33(3): 341-348. |
[5] | 陈可洋. 基于行波分离和角度域衰减的地震波叠前逆时成像条件[J]. 计算物理, 2016, 33(2): 205-211. |
[6] | 王兆清, 綦甲帅, 唐炳涛. 奇异源项问题的重心插值数值解[J]. 计算物理, 2011, 28(6): 883-888. |
[7] | 陈生昌, 马在田, WU Ru-Shan. 地震波传播路径追踪的波动方程方法[J]. 计算物理, 2008, 25(2): 186-190. |
[8] | 陈生昌, 马在田, WU Ru-Shan. 波动方程角度域偏移成像[J]. 计算物理, 2007, 24(2): 211-216. |
[9] | 陈生昌, 马在田, WU Ru-shan. 波动方程深度偏移的局部裂步Fourier传播算子[J]. 计算物理, 2006, 23(5): 604-608. |
[10] | 付汉清, 王泰春. 非稳腔傍轴波动方程高斯球面波修正方法的数值研究[J]. 计算物理, 2001, 18(6): 501-506. |
[11] | 杜其奎, 余德浩. 波动方程基于自然边界归化的区域分解算法[J]. 计算物理, 2001, 18(5): 417-422. |
[12] | 张大力, 吴建成, 刘家琦. 一维波动方程反问题求解的正则迭代法[J]. 计算物理, 2000, 17(3): 326-330. |
[13] | 郝现军, 朱本仁, 张关泉. 一维声波方程声阻抗反演问题的稳定性分析[J]. 计算物理, 1998, 15(5): 559-567. |
[14] | 张中明, 熊烨. BN、BH分子辐射带系的Franck-Condon因子计算[J]. 计算物理, 1998, 15(3): 343-348. |
[15] | 张文飞, 李晓江. 双参数波动方程反问题的数值解法[J]. 计算物理, 1997, 14(2): 129-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发