1 |
XU Jinchao . A novel two-grid method for semilinear elliptic equations[J]. SIAM Journal on Scientific Computing, 1994, 15 (1): 231- 237.
DOI
|
2 |
XU Jinchao . Two-grid discretization techniques for linear and nonlinear PDEs[J]. SIAM Journal on Numerical Analysis, 1996, 33 (5): 1759- 1777.
DOI
|
3 |
LAYTON W . A two-level discretization method for the Navier-Stokes equations[J]. Computers & Mathematics With Applications, 1993, 26 (2): 33- 38.
|
4 |
HE Yinnian , LI Kaitai . Two-level stabilized finite element methods for the steady Navier-Stokes problem[J]. Computing, 2005, 74 (4): 337- 351.
DOI
|
5 |
LI Jian , HE Yinnian , XU Hui . A multi-level stabilized finite element method for the stationary Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196 (29/30): 2852- 2862.
|
6 |
WEN Juan , HUANG Pengzhan , HE Yaling . The two-level stabilized finite element method based on multiscale enrichment for the stokes eigenvalue problem[J]. Acta Mathematica Scientia, 2021, 41 (2): 381- 396.
DOI
|
7 |
HE Yinnian , WANG Aiwen . A simplified two-level method for the steady Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197 (17/18): 1568- 1576.
|
8 |
OLSHANSKII M A , REUSKEN A . Grad-div stablilization for stokes equations[J]. Mathematics of Computation, 2004, 73 (248): 1699- 1718.
|
9 |
DE FRUTOS J , GARCÍA-ARCHILLA B , JOHN V , et al. Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements[J]. Advances in Computational Mathematics, 2018, 44 (1): 195- 225.
DOI
|
10 |
AHMED N . On the grad-div stabilization for the steady Oseen and Navier-Stokes equations[J]. Calcolo, 2017, 54 (1): 471- 501.
DOI
|
11 |
王湛煌, 郑波, 尚月强. 非定常Navier-Stokes方程的并行两水平稳定有限元算法[J]. 计算物理, 2023, 40 (1): 14- 28.
|
12 |
朱家莉, 尚月强. 不可压缩流的并行两水平稳定有限元算法[J]. 计算物理, 2022, 39 (3): 309- 317.
|
13 |
丁琪, 尚月强. 非定常Navier-Stokes方程基于两重网格离散的有限元并行算法[J]. 计算物理, 2020, 37 (1): 10- 18.
|
14 |
LI Wei , HUANG Pengzhan , HE Yinnian . Grad-div stabilized finite element schemes for the fluid-fluid interaction model[J]. Communications in Computational Physics, 2021, 30 (2): 536- 566.
DOI
|
15 |
LAYTON W , XU Shuxian . Stability in 3d of a sparse grad-div approximation of the Navier-Stokes equations[J]. Journal of Mathematical Analysis and Applications, 2022, 516 (1): 126484.
|
16 |
ADAMS R A . Sobolev spaces[M]. New York: Academaic Press, 1975.
|
17 |
SHANG Yueqiang . A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations[J]. Journal of Computational Physics, 2013, 233, 210- 226.
|
18 |
JOHN V . Finite element methods for incompressible flow problems[M]. Cham: Springer Cham, 2016.
|
19 |
HECHT F . New development in freefem++[J]. Journal of Numerical Mathematics, 2012, 20 (3/4): 251- 265.
|
20 |
HE Yinnian , LI Jian . Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198 (15/16): 1351- 1359.
|