[1] XU J C, ZHOU A H. Local and parallel finite element algorithms based on two-grid discretizations[J]. Mathematics of Computation, 2000, 69:881-909. [2] XU J C, ZHOU A H. Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems[J]. Advances in Computational Mathematics, 2001, 14(4):293-327. [3] XU J C, ZHOU A H. Local and parallel finite element algorithms for eigenvalue problems[J]. Acta Mathematicae Applicatae Sinica, 2002, 18:185-200. [4] HE Y N, XU J C, ZHOU A H, LI J. Local and parallel finite element algorithms for the Stokes problem[J]. Numerische Mathematik, 2008, (3):415-434. [5] HE Y N, XU J C, ZHOU A H. Local and parallel finite element algorithms for the Navier-Stokes problem[J]. Journal of Computational Mathematics, 2006, 24(3):227-238. [6] SHANG Y Q, QIN J. Parallel finite element variational multiscale algorithms for incompressible flow at high Reynolds numbers[J]. Applied Numerical Mathematics, 2017, 117:1-21. [7] SHANG Y Q, HE Y N, KIM D W, ZHOU X J. A new parallel finite element algorithm for the stationary Navier-Stokes equations[J]. Finite Elements in Analysis and Design, 2011, 47(11):1262-1279. [8] MA F Y, MA Y C, WO W F. Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations[J]. Applied Mathematics and Mechanics, 2007, 28(1):27-35. [9] LUO H, SEGAWA H, VISBAL M R. An implicit discontinuous Galerkin method for the unsteady compressible Navier-Stokes equations[J]. Computers and Fluids, 2012,53(2):133-144. [10] LI J, HE Y N, CHEN Z X. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 197:22-35. [11] ZHANG T, YANG J. A two-level finite volume method for the unsteady Navier-Stokes equations based on two local Gauss integrations[J]. Journal of Computational and Applied Mathematics, 2014, 263(8):377-391. [12] SUN C Y, LI Q L, YANG Z C. Least-squares finite element method for unsteady stress formulation of Navier-Stokes equations[J]. Chinese Journal of Computational Physics, 2015, 32(1):13-19. [13] SHANG Y Q. Error analysis of a fully discrete finite element variational multiscale method for time-dependent incompressible Navier-Stokes equations[J]. Numerical Methods for Partial Differential Equations, 2013, 29(6):2025-2046. [14] AOUSSOU J, LIN J, LERMUSIAUX P F J. Iterated pressure-correction projection methods for the unsteady incompressible Navier-Stokes equations[J]. Journal of Computational Physics 2018, 373:940-974. [15] SHANG Y Q, HE Y N. Parallel finite element algorithms based on fully overlapping domain decomposition for time-dependent Navier-Stokes equations[J]. Chinese Journal of Computational Physics, 2011, 28(2):181-187. [16] YANG X C, SHANG Y Q. Two-level subgrid stabilized methods for Navier-Stokes equations at high Reynolds numbers[J]. Chinese Journal of Computational Physics, 2017, 34(6):657-665. [17] ADAMS R. Sobolev spaces[M]. New York:Academic Press Inc, 1975. [18] HEYWOOD J G, RANNACHER R. Finite element approximation of the nonstationary Navier-Stokes problem I:Regularity of solutions and second-order error estimates for spatial discretization[J]. SIAM Journal on Numerical Analysis, 1982, 19:275-311. [19] GIRAULT V, RAVIART P A. Finite element methods for Navier-Stokes equations:Theory and algorithms[J]. Journal of Applied Mathematics and Mechanics, 1987, 67:579. [20] SCHATZ A H, WAHLBIN L B. Interior maximum norm estimates for finite element methods[J]. Mathematics of Computation, 1977, 31:414-442. [21] SCHATZ A H, WAHLBIN L B. Interior maximum-norm estimates for finite element methods,part II[J]. Mathematics of Computation, 1995, 64:907-928. [22] HECHT F. New development in Freefem++[J]. Journal of Numerical Mathematics, 2012, 20:251-265. |