计算物理 ›› 2010, Vol. 27 ›› Issue (3): 335-341.

• 研究论文 • 上一篇    下一篇

Poisson方程有限差分逼近的两种保对称Stencil消元格式

李厚彪1,2, 刘兴平2, 谷同祥2, 黄廷祝1, 李红1   

  1. 1. 电子科技大学应用数学学院, 四川 成都 610054;
    2. 北京应用物理与计算数学研究所计算物理实验室, 北京 100088
  • 收稿日期:2008-12-22 修回日期:2009-06-20 出版日期:2010-05-25 发布日期:2010-05-25
  • 作者简介:李厚彪(1976-),男,山东,副教授,博士,主要从事数值代数和科学计算领域的研究,北京8009信箱26分箱100088.
  • 基金资助:
    国家重点基础研究发展计划(编号:2005CB221300);国家自然科学基金(编号:10926190,60973015,60973151);四川省应用基础研究(2008JY0052);中物院科学技术发展基金;中国博士后科学基金资助项目

Two Stencil Elimination Schemes with Preserved Symmetry in Finite Difference Approximation for Poisson Equations

LI Houbiao1,2, LIU Xingping2, GU Tongxiang2, HUANG Tingzhu1, LI Hong1   

  1. 1. School of Mathematicsal Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China;
    2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • Received:2008-12-22 Revised:2009-06-20 Online:2010-05-25 Published:2010-05-25

摘要: 针对已有Stencil差分格式的非对称性,提出两种保对称的Stencil边界消元策略,获得一组具有对称正定性的差分方程.此方程系数矩阵比经典的五点差分Jacobi矩阵条件数减少了7/9,并且特征值更加聚集.理论分析和数值试验皆表明其优于已有的非对称格式,具有更广的使用价值.

关键词: Poisson方程, Stencil消元, 差分, 对称

Abstract: Two kinds of Stencil elimination schemes with preserved symmetry are presented.Correlative symmetric positive definite difference equations are obtained.Condition number of coefficient matrix decreases over 7/9 folding ratio than that of five point difference Jacobi's.Their eigenvalues have a good clustered spectrum.Theoretic analysis and numerical experiments show that they are better than un-symmetric ones,and are more useful.

Key words: Poisson equation, stencil elimination, finite difference, symmetry

中图分类号: