摘要: 给出一种求解双曲型守恒律的五阶半离散中心迎风格式.对一维问题,该格式以五阶中心WENO重构为基础;对二维问题,用逐维计算的方法将五阶中心WENO重构进行推广.时间方向的离散采用Runge-Kutta方法.格式保持了中心差分格式简单的优点,即不用求解Riemann问题,避免进行特征分解.用该格式对一维和二维Euler方程进行数值试验,结果表明该格式是高精度、高分辨率的.
中图分类号:
胡彦梅, 陈建忠, 封建湖. 双曲型守恒律的一种五阶半离散中心迎风格式[J]. 计算物理, 2008, 25(1): 29-35.
HU Yanmei, CHEN Jianzhong, FENG Jianhu. A Fifth-order Semi-discrete Central-upwind Scheme for Hyperbolic Conservation Laws[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(1): 29-35.