围绕超热电子在高密度等离子体中传输和能量沉积问题, 从相对论粒子碰撞基本物理出发, 综合考虑相对论库伦碰撞和集体效应下等能量损失过程、背景等离子体电子回流和升温过程, 建立超热电子相对论Fokker-Planck混合模型; 构造直角-动量球坐标系下Fokker-Planck方程的有限体积算法, 通过计算单能电子束在高密度等离子体中能量沉积和磁场产生过程, 验证数值模拟程序。针对激光惯性聚变中超热电子的预加热效应, 计算超热电子能量为单能和双麦氏分布情形下在靶丸中的能量沉积占比。
研究针对混驱点火模型, 保持直驱激光能量不变, 针对1 200, 1 400和1 500 μm直驱光焦斑尺寸, 采用数值模拟, 研究其对点火性能的影响。研究表明: 直驱光焦斑尺寸是影响混驱点火性能的敏感因素。1 500 μm焦斑尺寸可实现近一维点火。1 400 μm焦斑尺寸放能接近一维放能的40%。1 200 μm焦斑尺寸点火失败, 仅仅处于燃烧等离子体状态。分析表明, 1 200 μm焦斑尺寸条件下点火失败的原因是: 其产生的局部强光强和高驱动不对称性, 会导致燃料熵增加及燃料面密度扰动增加。燃料熵的增加将会降低燃料压缩性, 不利于创造高温高压点火条件, 形成的燃烧波较弱。燃料面密度扰动增加会导致燃烧后壳层不稳定性剧烈增长。推断在小焦斑尺寸条件下, 弱燃烧波及高燃料面密度扰动增长, 会导致高密度尖钉难以被有效点燃, 无法形成升温与燃烧的正反馈。同时, 燃料区域内界面不稳定性发展产生的尖钉结构将降低热斑温度, 产生的气泡结构将引起热斑体积迅速变大, 导致热斑快速降温乃至点火失败。
报道混驱点火靶设计的最新进展,给出高熵(> 3.0)高内爆速度(> 400 km·s-1)的中心点火靶设计。首先利用两台阶的间驱辐射波形(峰值温度为200 eV)烧蚀和预压缩靶丸;然后用功率为340 TW的直驱光和间驱共同作用驱动靶丸内爆。混驱下的“推土机”效应把辐射烧蚀的冕区等离子体堆积成高密度平台,产生高达500 Mbar以上的驱动压力,实现了高熵(约为3.4)高内爆速度(约为425 km·s-1)下的中心点火靶设计,对应热斑压力在200 Gbar左右,收缩比只有23倍。二维模拟热斑界面处中线性增长因子 < 10,表明该靶设计更容易形成健壮的点火热斑。