将局部基本解方法应用于静电场问题的模拟与分析。局部基本解方法是利用控制方程的基本解,基于局部理论和移动最小二乘原理提出的一种无网格算法。相比于有限元和有限差分等传统网格类方法,该方法仅需离散节点,避免了复杂的网格剖分难题。作为一种半解析数值技术,物理问题的基本解被作为插值基函数建立数值离散模型,从而保证了算法的较高精度。此外,与具有全局离散格式的无网格方法相比,局部基本解法更适用于高维复杂几何和大尺度模拟。二维和三维数值试验表明,该方法具有实施方便灵活,计算精度高和计算速度快等优势。为静电场仿真研究开辟新的途径,拓展了局部基本解方法的应用领域。