[1] XU J C. A novel two-grid method for semilinear elliptic equations[J]. SIAM J Sci Comput,1994,15(1):231-237. [2] XU J C. Two-grid discretization techniques for linear and nonlinear PDEs[J]. SIAM J Numer Anal,1996,33(5):1759-1777. [3] LAYTON W. A two level discretization method for the Navier-Stokes equations[J]. Comput Math Appl,1993,26(2):33-38. [4] LAYTON W, LENFERINK W. Two-level Picard-defect corrections for the Navier-Stokes equations at Reynolds number[J]. Applied Math Comput,1995,69:263-274. [5] HE Y N, LI K T. Two-level stabilized finite element method for the steady Navier-Stokes problem[J]. Computing,2005,74:337-351. [6] HE Y N, ZHANG Y, SHANG Y Q, XU H. Two-level Newton iterative method for the 2D/3D steady Navier-Stokes equations[J]. Numer Methods Partial Differential Eq,2012,28:1620-1642. [7] ZHANG Y, HE Y N. Assessment of subgrid-scale models for the incompressible Navier-Stokes equations[J]. J Comput Appl Math 2010,234(2):593-604. [8] SHANG Y Q. A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations[J]. Journal of Computational Physics,2013,233:210-226. [9] SHANG Y Q, QIN J. A two-parameter stabilized finite element method for incompressible flows[J]. Numerical Methods for Partial Differential Equations,2017,33(2):425-444. [10] HECHT F. New development in Freefem++[J]. J Numer Math,2012,20:251-265. [11] GHIA U, GHIA K, SHIN C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigird method[J]. J Comput Phys,1982,48:387-411. |