[1] INGHAM D B, POP I. Transport phenomena in porous media[M]. Elsevier, 1998. [2] BRINKMAN H. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[J]. Applied Scientific Research, 1949, 1(1):27-34. [3] VAFAI K, TIEN C. Boundary and inertia effects on flow and heat transfer in porous media[J]. International Journal of Heat and Mass Transfer, 1981, 24(2):195-203. [4] WHITAKER S. The Forchheimer equation:A theoretical development[J]. Transport in Porous Media, 1996, 25(1):27-61. [5] NITHIARASU P, SEETHARAMU K, SUNDARARAJAN T. Natural convective heat transfer in a fluid saturated variable porosity medium[J]. International Journal of Heat and Mass Transfer, 1997, 40(16):3955-3967. [6] KARIMIFARD M, CHARRIERMOJTABI M C, VAFAI K. Non-Darcian effects on double-diffusive convection within a porous medium[J]. Numerical Heat Transfer Part A:Applications, 1997, 31(8):837-852. [7] JUE T C. Analysis of heat and fluid flow in partially divided fluid saturated porous cavities[J]. Heat and Mass Transfer, 2000, 36(4):285-294. [8] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2009. [9] CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1):329-364. [10] SUCCI S. The lattice Boltzmann equation:For fluid dynamics and beyond[M]. Oxford University Press, 2001. [11] GUO Z, ZHAO T. Lattice Boltzmann model for incompressible flows through porous media[J]. Physical Review E, 2002, 66(3):036304. [12] ZARGHAMI A, BISCARINI C, SUCCI S, et al. Hydrodynamics in porous media:A finite volume lattice Boltzmann study[J]. Journal of Scientific Computing, 2014, 59(1):80-103. [13] GUO Z, XU K, WANG R. Discrete unified gas kinetic scheme for all Knudsen number flows:Low-speed isothermal case[J]. Physical Review E, 2013, 88(3):033305. [14] GUO Z, WANG R, XU K. Discrete unified gas kinetic scheme for all Knudsen number flows Ⅱ:Thermal compressible case[J]. Physical Review E, 2015, 91(3):033313. [15] XU K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J]. Journal of Computational Physics, 2001, 171(1):289-335. [16] ZHU L, GUO Z, XU K. Discrete unified gas kinetic scheme on unstructured meshes[J]. Computers & Fluids, 2016, 127:211-225. [17] WANG P, ZHU L, GUO Z, et al. A comparative study of LBE and DUGKS methods for nearly incompressible flows[J]. Communications in Computational Physics, 2015, 17(3):657-681. [18] KANG Q, ZHANG D, CHEN S. Unified lattice Boltzmann method for flow in multiscale porous media[J]. Physical Review E, 2002, 66(5):056307. [19] ZHU L, WANG P, GUO Z. Performance evaluation of the general characteristics based off-lattice Boltzmann scheme and DUGKS for low speed continuum flows[J]. Journal of Computational Physics, 2017, 333:227-246. [20] ERGUN S. Fluid flow through packed columns[J]. Chem Eng Prog, 1952, 48:89-94. [21] WU C, SHI B, CHAI Z, et al. Discrete unified gas kinetic scheme with a force term for incompressible fluid flows[J]. Computers & Mathematics with Applications, 2016, 71(12):2608-2629. [22] HE X, CHEN S, DOOLEN G D. A novel thermal model for the lattice Boltzmann method in incompressible limit[J]. Journal of Computational Physics, 1998, 146(1):282-300. [23] HUANG Z, YAO J, WANG Y, et al. Numerical simulation on water flooding development of fractured reservoirs in a discrete-fracture model[J]. Chinese Journal of Computational Physics, 2011, 28(1):41-49. [24] ZHANG J, HUANG S, CHENG L. Monte Carlo calculation of stable productivity of fractured directional wells in natural fracture reservoirs[J]. Chinese Journal of Computational Physics, 2014, 31(5):567-572. |