Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (5): 585-594.DOI: 10.19596/j.cnki.1001-246x.8322
Special Issue: 多孔介质毛细动力学研究
• Research Reports • Previous Articles Next Articles
Yulong ZHAO1(), Houjie ZHOU1, Hongxi LI2, Tao WEN2, Ruihan ZHANG1, Liehui ZHANG1
Received:
2020-12-16
Online:
2021-09-25
Published:
2022-03-24
CLC Number:
Yulong ZHAO, Houjie ZHOU, Hongxi LI, Tao WEN, Ruihan ZHANG, Liehui ZHANG. Gas-water Two-phase Flow Simulation of Low-permeability Sandstone Digital Rock: Level-set Method[J]. Chinese Journal of Computational Physics, 2021, 38(5): 585-594.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8322
Fig.1 (a)Gray image of low permeability sandstone; (b)Image obtained with non-local-means filter; (c)Pore segmentation results(xy plane); (d)Connected pore space; (e)Representative elementary volume; (f)Unstructured tetrahedral mesh; (g)Inlet; (h)Outlet
1 |
李闽, 蒋琼, 廖志, 等. 水驱气藏采收率计算方法及其影响因素研究[J]. 非常规油气, 2015, 2 (1): 35- 40.
DOI |
2 | LEI Q, ZHANG L H, TANG H M, et al. Describing the full pore size distribution of tight sandstone and analyzing the impact of clay type on pore size distribution[J]. Geofluids, 2020, (3): 1- 20. |
3 |
YANG Y, YANG H, TAO L, et al. Microscopic determination of remaining oil distribution in sandstones with different permeability scales using computed tomography scanning[J]. Journal of Energy Resources Technology, 2019, 141 (9): 092903.
DOI |
4 |
YANG Y, YAO J, WANG C, et al. New pore space characterization method of shale matrix formation by considering organic and inorganic pores[J]. Journal of Natural Gas Science and Engineering, 2015, 27, 496- 503.
DOI |
5 |
LI K, KONG S, XIA P, et al. Microstructural characterisation of organic matter pores in coal-measure shale[J]. Advances in Geo-Energy Research, 2020, 4 (4): 372- 391.
DOI |
6 |
SUN S, ZHANG T. A 6M digital twin for modeling and simulation in subsurface reservoirs[J]. Advances in Geo-Energy Research, 2020, 4 (4): 349- 351.
DOI |
7 |
LIU Z, YANG Y, YAO J, et al. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology[J]. Advances in Geo-Energy Research, 2017, 1 (3): 171- 181.
DOI |
8 |
WANG H, YUAN X, LIANG H, et al. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows[J]. Capillarity, 2019, 2 (3): 33- 52.
DOI |
9 |
YANG Y F, WANG K, ZHANG L, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251, 683- 692.
DOI |
10 |
AN S Y, YAO J, YANG Y F, et al. Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model[J]. Journal of Natural Gas Science and Engineering, 2016, 31, 156- 163.
DOI |
11 |
LI J H, ZHENG B. Digital core and pore network model reconstruction based on random fractal theory[J]. International Journal of Energy and Statistics, 2015, 3 (1): 1550001.
DOI |
12 |
HUANG X, BANDILLA K W, CELIA M A. Multi-physics pore-network modeling of two-phase shale matrix flows[J]. Transport in Porous Media, 2016, 111 (1): 123- 141.
DOI |
13 | 赵玉龙, 刘香禺, 张烈辉, 等. 致密砂岩气藏气水流动规律及储层干化作用机理[J]. 天然气工业, 2020, 40 (9): 70- 79. |
14 |
ZHANG L, KANG Q J, YAO J, et al. Pore scale simulation of liquid and gas two-phase flow based on digital core technology[J]. Science China: Technological Sciences, 2015, 58 (8): 1375- 1384.
DOI |
15 | ZAKIROV T, GALEEV A, KHRAMCHENKOV M. Drainage and impregnation capillary pressure curves calculated by the X-ray CT model of berea sandstone using lattice Boltzmann's method[J]. Earth and Environmental Science, 2017, 155, 19- 23. |
16 | ZHANG N, YAO J, HUANG Z Q, et al. Locally conservative Galerkin numerical simulation for two-phase flow in porous media[J]. Chinese Journal of Computational Physics, 2013, 30 (5): 667- 674. |
17 |
高亚军, 姜汉桥, 王硕亮, 等. 基于Level Set有限元方法的微观水驱油数值模拟[J]. 石油地质与工程, 2016, 30 (5): 91- 142. 91-96, 141-142
DOI |
18 |
ZHU Q L, ZHOU Q L, LI X C. Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media[J]. Journal of Rock Mechanics and Geotechnical Engi-neering, 2016, 8 (1): 87- 92.
DOI |
19 |
AMIRI H A A, HAMOUDA A A. Pore-scale modeling of non-isothermal two phase flow in 2D porous media: Influences of viscosity, capillarity, wettability and heterogeneity[J]. International Journal of Multiphase Flow, 2014, 61, 14- 27.
DOI |
20 | FENG Q H, ZHAO Y C, WANG S, et al. Pore-scale oil-water two-phase flow simulation based on phase field method[J]. Chinese Journal of Computational Physics, 2020, 37 (4): 439- 447. |
21 | GAO Y J, YANG R L, HUANG L L, et al. Phase field crystal simulation in nano-scale for crack extension with predeformation[J]. Chinese Journal of Computation Physics, 2017, 34 (4): 453- 460. |
22 | QASEMINEJAD R A. Modelling multiphase flow through micro-CT image of the pore space[D]. London: Imperial College London, 2013, 135. |
23 | 李昂, 于浩波, 谢斌, 等. 基于有限体积法的致密油储层数字岩心中流动与传热研究[J]. 测井技术, 2017, 41 (2): 135- 140. |
24 | 朱洪林. 低渗砂岩储层孔隙结构表征及应用研究[D]. 成都: 西南石油大学, 2014. |
25 | 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32 (3): 1019- 1028. |
26 |
OLSSON E, KREISS G. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210 (1): 225- 246.
DOI |
27 |
ROY S, RAJU R, CHUANG H F, et al. Modeling gas flow through microchannels and nanopores[J]. Journal of Applied Physics, 2003, 93 (8): 4870- 4879.
DOI |
28 |
COLIN S. Rarefaction and compressibility effects on steady and transient gas flows in micro-channels[J]. Microfluidics and Nanofluidics, 2005, 1 (3): 268- 279.
DOI |
29 |
OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79 (1): 12- 49.
DOI |
30 |
OLSSON E, KREISS G, ZAHEDI S. A conservative level set method for two phase flow Ⅱ[J]. Journal of Computational Physics, 2007, 225 (1): 785- 807.
DOI |
31 | SUSSMAN M, ALMGREN A S, BELL J B, et al. An adaptive level set approach for incompressible two-phase flows[J]. J Comput Phys, 1997, 148 (1): 81- 124. |
32 |
SHEPEL S V, SMITH B L. New finite-element/finite-volume level set formulation for modeling two-phase incompressible flows[J]. Journal of Computational Physics, 2006, 218 (2): 479- 494.
DOI |
33 |
LI B, LIU Q S, XU J W, et al. A new method for removing mixed noises[J]. Science in China Series F: Information Sciences, 2011, 54 (1): 51- 59.
DOI |
34 |
王平全, 陶鹏, 刘建仪, 等. 基于数字岩心的低渗透储层微观渗流机理研究[J]. 非常规油气, 2016, 3 (6): 1- 5.
DOI |
[1] | Renyi CAO, Tao HUANG, Linsong CHENG, Zhanwu GAO, Zhihao JIA. Influence of Polar Substance of Crude Oil on Adsorption and Wettability in Water Flooding Reservoir: Molecular Simulation [J]. Chinese Journal of Computational Physics, 2021, 38(5): 595-602. |
[2] | Hubao A, Zhibing YANG, Ran HU, Yifeng CHEN. Molecular Dynamics Simulations of Capillary Dynamics at the Nanoscale [J]. Chinese Journal of Computational Physics, 2021, 38(5): 603-611. |
[3] | CHAI Rukuan, LIU Yuetian, WANG Junqiang, XIN Jing, PI Jian, LI Changyong. Molecular Dynamics Simulation of Wettability of Calcite and Dolomite [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(4): 474-482. |
[4] | DUAN Maochang, YU Xijun, CHEN Dawei, HUANG Chaobao, AN Na. DG Method for Compressible Gas-Solid Two-phase Flow [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(6): 631-640. |
[5] | SUN Jingjing, HUANG Zhaoqin, YAO Jun, LI Aifen, WANG Daigang. Numerical Simulation of Water Flooding Development in Low Permeability Reservoirs with a Discrete Fracture Model [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(2): 177-185. |
[6] | ZHANG Renliang, DI Qinfeng, WANG Xinliang, GU Chunyuan, WANG Wenchang. Lattice Boltzmann Simulation of Flow in a Micro-channel [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(2): 225-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.