Chinese Journal of Computational Physics ›› 2022, Vol. 39 ›› Issue (1): 17-32.DOI: 10.19596/j.cnki.1001-246x.8337
• Research Reports • Previous Articles Next Articles
Shuxian ZHANG1,2(), Xudeng HANG1,3,*(
)
Received:
2021-02-01
Online:
2022-01-25
Published:
2022-09-03
Contact:
Xudeng HANG
Shuxian ZHANG, Xudeng HANG. Applications of Local Maximum-principle-preserving Linear Vertex Scheme of Second Order Convergence for Two-dimensional Diffusion Equations[J]. Chinese Journal of Computational Physics, 2022, 39(1): 17-32.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8337
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 3.19×10-2 | 1.59×10-2 | 9.35×10-3 | 5.03×10-3 | 2.83×10-3 |
Rate | 1.01 | 0.76 | 0.89 | 0.83 | ||
L2 | 9.99×10-3 | 5.21×10-3 | 2.56×10-3 | 1.32×10-3 | 6.71×10-4 | |
Rate | 0.94 | 1.02 | 0.96 | 0.98 | ||
Taylor | L∞ | 4.12×10-3 | 1.15×10-3 | 3.15×10-4 | 7.87×10-5 | 2.02×10-5 |
Rate | 1.84 | 1.87 | 2.00 | 1.96 | ||
L2 | 2.95×10-3 | 7.75×10-4 | 2.00×10-4 | 5.05×10-5 | 1.27×10-5 | |
Rate | 1.93 | 1.95 | 1.99 | 1.99 | ||
VOC-N | L∞ | 4.12×10-3 | 1.13×10-3 | 2.95×10-4 | 7.83×10-5 | 1.98×10-5 |
Rate | 1.87 | 1.94 | 1.91 | 1.98 | ||
L2 | 2.93×10-3 | 7.65×10-4 | 1.97×10-4 | 4.98×10-5 | 1.25×10-5 | |
Rate | 1.94 | 1.95 | 1.99 | 1.99 | ||
VOC-Y | L∞ | 3.33×10-3 | 8.84×10-4 | 2.34×10-4 | 6.30×10-5 | 1.62×10-5 |
Rate | 1.91 | 1.92 | 1.89 | 1.96 | ||
L2 | 2.32×10-3 | 6.09×10-4 | 1.56×10-4 | 3.96×10-5 | 9.94×10-6 | |
Rate | 1.93 | 1.96 | 1.98 | 1.99 |
Table 1 Comparison of vertex errors for a continuous problem
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 3.19×10-2 | 1.59×10-2 | 9.35×10-3 | 5.03×10-3 | 2.83×10-3 |
Rate | 1.01 | 0.76 | 0.89 | 0.83 | ||
L2 | 9.99×10-3 | 5.21×10-3 | 2.56×10-3 | 1.32×10-3 | 6.71×10-4 | |
Rate | 0.94 | 1.02 | 0.96 | 0.98 | ||
Taylor | L∞ | 4.12×10-3 | 1.15×10-3 | 3.15×10-4 | 7.87×10-5 | 2.02×10-5 |
Rate | 1.84 | 1.87 | 2.00 | 1.96 | ||
L2 | 2.95×10-3 | 7.75×10-4 | 2.00×10-4 | 5.05×10-5 | 1.27×10-5 | |
Rate | 1.93 | 1.95 | 1.99 | 1.99 | ||
VOC-N | L∞ | 4.12×10-3 | 1.13×10-3 | 2.95×10-4 | 7.83×10-5 | 1.98×10-5 |
Rate | 1.87 | 1.94 | 1.91 | 1.98 | ||
L2 | 2.93×10-3 | 7.65×10-4 | 1.97×10-4 | 4.98×10-5 | 1.25×10-5 | |
Rate | 1.94 | 1.95 | 1.99 | 1.99 | ||
VOC-Y | L∞ | 3.33×10-3 | 8.84×10-4 | 2.34×10-4 | 6.30×10-5 | 1.62×10-5 |
Rate | 1.91 | 1.92 | 1.89 | 1.96 | ||
L2 | 2.32×10-3 | 6.09×10-4 | 1.56×10-4 | 3.96×10-5 | 9.94×10-6 | |
Rate | 1.93 | 1.96 | 1.98 | 1.99 |
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 1.56 | 1.04 | 5.42 | 2.36 | 1.37 |
Rate | 0.58 | 0.94 | 1.20 | 0.78 | ||
L2 | 3.85 | 2.17 | 1.14 | 5.68×10-1 | 2.89×10-1 | |
Rate | 0.83 | 0.93 | 1.00 | 0.98 | ||
Taylor | L∞ | 2.11×101 | 1.23×101 | 6.09 | 3.21 | 1.60 |
Rate | 0.78 | 1.01 | 0.93 | 1.00 | ||
L2 | 5.10 | 2.20 | 7.58×10-1 | 2.73×10-1 | 9.44×10-2 | |
Rate | 1.21 | 1.54 | 1.47 | 1.53 | ||
VOC-N | L∞ | 2.13×10-2 | 6.58×10-3 | 1.95×10-3 | 4.99×10-4 | 1.48×10-4 |
Rate | 1.70 | 1.75 | 1.97 | 1.75 | ||
L2 | 6.62×10-3 | 1.83×10-3 | 4.75×10-4 | 1.21×10-4 | 3.05×10-5 | |
Rate | 1.86 | 1.94 | 1.98 | 1.98 | ||
VOC-Y | L∞ | 1.71×10-2 | 5.19×10-3 | 1.72×10-3 | 4.25×10-4 | 1.33×10-4 |
Rate | 1.72 | 1.59 | 2.02 | 1.67 | ||
L2 | 5.17×10-3 | 1.44×10-3 | 3.78×10-4 | 9.61×10-5 | 2.45×10-5 | |
Rate | 1.84 | 1.93 | 1.97 | 1.97 |
Table 2 Comparison of vertex errors for a discontinuous problem
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 1.56 | 1.04 | 5.42 | 2.36 | 1.37 |
Rate | 0.58 | 0.94 | 1.20 | 0.78 | ||
L2 | 3.85 | 2.17 | 1.14 | 5.68×10-1 | 2.89×10-1 | |
Rate | 0.83 | 0.93 | 1.00 | 0.98 | ||
Taylor | L∞ | 2.11×101 | 1.23×101 | 6.09 | 3.21 | 1.60 |
Rate | 0.78 | 1.01 | 0.93 | 1.00 | ||
L2 | 5.10 | 2.20 | 7.58×10-1 | 2.73×10-1 | 9.44×10-2 | |
Rate | 1.21 | 1.54 | 1.47 | 1.53 | ||
VOC-N | L∞ | 2.13×10-2 | 6.58×10-3 | 1.95×10-3 | 4.99×10-4 | 1.48×10-4 |
Rate | 1.70 | 1.75 | 1.97 | 1.75 | ||
L2 | 6.62×10-3 | 1.83×10-3 | 4.75×10-4 | 1.21×10-4 | 3.05×10-5 | |
Rate | 1.86 | 1.94 | 1.98 | 1.98 | ||
VOC-Y | L∞ | 1.71×10-2 | 5.19×10-3 | 1.72×10-3 | 4.25×10-4 | 1.33×10-4 |
Rate | 1.72 | 1.59 | 2.02 | 1.67 | ||
L2 | 5.17×10-3 | 1.44×10-3 | 3.78×10-4 | 9.61×10-5 | 2.45×10-5 | |
Rate | 1.84 | 1.93 | 1.97 | 1.97 |
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 1.12×10-1 | 5.76×10-2 | 3.31×10-2 | 3.48×10-2 | 3.54×10-2 |
Rate | 0.96 | 0.80 | -0.07 | -0.02 | ||
L2 | 2.77×10-2 | 1.37×10-2 | 1.50×10-2 | 1.69×10-2 | 1.73×10-2 | |
Rate | 1.02 | -0.14 | -0.17 | -0.03 | ||
Taylor | L∞ | 1.31×10-1 | 3.96×10-2 | 1.09×10-2 | 3.61×10-3 | 1.89×10-3 |
Rate | 1.73 | 1.86 | 1.60 | 0.94 | ||
L2 | 3.05×10-2 | 7.62×10-3 | 1.88×10-3 | 4.93×10-4 | 1.31×10-4 | |
Rate | 2.00 | 2.02 | 1.93 | 1.92 | ||
VOC-Y | L∞ | 1.32×10-1 | 3.80×10-2 | 1.19×10-2 | 2.54×10-3 | 7.33×10-4 |
Rate | 1.79 | 1.68 | 2.23 | 1.79 | ||
L2 | 3.10×10-2 | 7.81×10-3 | 1.89×10-3 | 4.61×10-4 | 1.20×10-4 | |
Rate | 1.99 | 2.05 | 2.03 | 1.95 |
Table 3 Result of the nine-point scheme for a discontinuous problem
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 1.12×10-1 | 5.76×10-2 | 3.31×10-2 | 3.48×10-2 | 3.54×10-2 |
Rate | 0.96 | 0.80 | -0.07 | -0.02 | ||
L2 | 2.77×10-2 | 1.37×10-2 | 1.50×10-2 | 1.69×10-2 | 1.73×10-2 | |
Rate | 1.02 | -0.14 | -0.17 | -0.03 | ||
Taylor | L∞ | 1.31×10-1 | 3.96×10-2 | 1.09×10-2 | 3.61×10-3 | 1.89×10-3 |
Rate | 1.73 | 1.86 | 1.60 | 0.94 | ||
L2 | 3.05×10-2 | 7.62×10-3 | 1.88×10-3 | 4.93×10-4 | 1.31×10-4 | |
Rate | 2.00 | 2.02 | 1.93 | 1.92 | ||
VOC-Y | L∞ | 1.32×10-1 | 3.80×10-2 | 1.19×10-2 | 2.54×10-3 | 7.33×10-4 |
Rate | 1.79 | 1.68 | 2.23 | 1.79 | ||
L2 | 3.10×10-2 | 7.81×10-3 | 1.89×10-3 | 4.61×10-4 | 1.20×10-4 | |
Rate | 1.99 | 2.05 | 2.03 | 1.95 |
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 2.24×10-2 | 2.56×10-2 | 1.21×10-2 | 8.19×10-3 | 6.42×10-3 |
L2 | 5.78×10-3 | 4.78×10-3 | 2.61×10-3 | 1.39×10-3 | 8.26×10-4 | |
Taylor | L∞ | 8.37×10-3 | 7.34×10-3 | 5.35×10-3 | 2.37×10-3 | 1.30×10-3 |
L2 | 1.92×10-3 | 1.19×10-3 | 4.50×10-4 | 1.47×10-4 | 6.05×10-5 | |
VOC-Y | L∞ | 1.57×10-12 | 6.44×10-14 | 4.01×10-13 | 8.48×10-14 | 3.69×10-13 |
L2 | 6.67×10-13 | 3.24×10-14 | 1.32×10-13 | 1.89×10-14 | 8.74×10-14 |
Table 4 Result of the nine-point scheme for a linear problem
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 2.24×10-2 | 2.56×10-2 | 1.21×10-2 | 8.19×10-3 | 6.42×10-3 |
L2 | 5.78×10-3 | 4.78×10-3 | 2.61×10-3 | 1.39×10-3 | 8.26×10-4 | |
Taylor | L∞ | 8.37×10-3 | 7.34×10-3 | 5.35×10-3 | 2.37×10-3 | 1.30×10-3 |
L2 | 1.92×10-3 | 1.19×10-3 | 4.50×10-4 | 1.47×10-4 | 6.05×10-5 | |
VOC-Y | L∞ | 1.57×10-12 | 6.44×10-14 | 4.01×10-13 | 8.48×10-14 | 3.69×10-13 |
L2 | 6.67×10-13 | 3.24×10-14 | 1.32×10-13 | 1.89×10-14 | 8.74×10-14 |
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 2.16×10-2 | 2.71×10-2 | 1.50×10-2 | 8.85×10-3 | 8.30×10-3 |
Rate | -0.33 | 0.86 | 0.76 | 0.09 | ||
L2 | 6.46×10-3 | 6.05×10-3 | 3.94×10-3 | 3.22×10-3 | 3.28×10-3 | |
Rate | 0.09 | 0.62 | 0.29 | -0.03 | ||
Taylor | L∞ | 8.91×10-3 | 1.15×10-2 | 5.99×10-3 | 2.55×10-3 | 1.73×10-3 |
Rate | -0.37 | 0.94 | 1.23 | 0.56 | ||
L2 | 2.30×10-3 | 1.55×10-3 | 4.95×10-4 | 1.61×10-4 | 7.37×10-5 | |
Rate | 0.57 | 1.65 | 1.62 | 1.12 | ||
VOC-Y | L∞ | 2.69×10-3 | 8.30×10-4 | 1.97×10-4 | 6.55×10-5 | 2.05×10-5 |
Rate | 1.69 | 2.08 | 1.59 | 1.68 | ||
L2 | 9.12×10-4 | 2.68×10-4 | 6.07×10-5 | 1.83×10-5 | 4.32×10-6 | |
Rate | 1.77 | 2.14 | 1.73 | 2.08 |
Table 5 Result of the positivity-preserving scheme for a discontinuous problem
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 2.16×10-2 | 2.71×10-2 | 1.50×10-2 | 8.85×10-3 | 8.30×10-3 |
Rate | -0.33 | 0.86 | 0.76 | 0.09 | ||
L2 | 6.46×10-3 | 6.05×10-3 | 3.94×10-3 | 3.22×10-3 | 3.28×10-3 | |
Rate | 0.09 | 0.62 | 0.29 | -0.03 | ||
Taylor | L∞ | 8.91×10-3 | 1.15×10-2 | 5.99×10-3 | 2.55×10-3 | 1.73×10-3 |
Rate | -0.37 | 0.94 | 1.23 | 0.56 | ||
L2 | 2.30×10-3 | 1.55×10-3 | 4.95×10-4 | 1.61×10-4 | 7.37×10-5 | |
Rate | 0.57 | 1.65 | 1.62 | 1.12 | ||
VOC-Y | L∞ | 2.69×10-3 | 8.30×10-4 | 1.97×10-4 | 6.55×10-5 | 2.05×10-5 |
Rate | 1.69 | 2.08 | 1.59 | 1.68 | ||
L2 | 9.12×10-4 | 2.68×10-4 | 6.07×10-5 | 1.83×10-5 | 4.32×10-6 | |
Rate | 1.77 | 2.14 | 1.73 | 2.08 |
均匀网格 | 随机网格 | |||
ug | uc | ug | uc | |
umin | 1.195×10-3 | 3.682×10-4 | 1.203×10-3 | 3.603×10-4 |
umax | 0.999 800 | 0.999 950 | 0.999 797 | 0.999 951 |
Table 6 The minimum and maximum numerical solutions
均匀网格 | 随机网格 | |||
ug | uc | ug | uc | |
umin | 1.195×10-3 | 3.682×10-4 | 1.203×10-3 | 3.603×10-4 |
umax | 0.999 800 | 0.999 950 | 0.999 797 | 0.999 951 |
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 1.22×10-1 | 1.03×10-1 | 4.71×10-2 | 3.24×10-2 | 1.87×10-2 |
Rate | 0.24 | 1.13 | 0.54 | 0.79 | ||
L2 | 3.21×10-2 | 1.86×10-2 | 9.10×10-3 | 4.78×10-3 | 2.40×10-3 | |
Rate | 0.79 | 1.03 | 0.93 | 1.00 | ||
Taylor | L∞ | 1.98×10-1 | 7.52×10-2 | 3.01×10-2 | 1.69×10-2 | 7.60×10-3 |
Rate | 1.39 | 1.32 | 0.83 | 1.15 | ||
L2 | 5.64×10-2 | 1.54×10-2 | 4.11×10-3 | 1.27×10-3 | 3.91×10-4 | |
Rate | 1.88 | 1.90 | 1.70 | 1.69 | ||
VOC-Y | L∞ | 1.27×10-1 | 4.43×10-2 | 1.09×10-2 | 4.77×10-3 | 4.78×10-3 |
Rate | 1.52 | 2.03 | 1.19 | 0.00 | ||
L2 | 3.48×10-2 | 9.17×10-3 | 2.31×10-3 | 5.77×10-4 | 1.55×10-4 | |
Rate | 1.92 | 1.99 | 2.00 | 1.90 |
Table 7 Error comparison of the three vertex schemes
M × N | 12 × 12 | 24 × 24 | 48 × 48 | 96 × 96 | 192 × 192 | |
MIDW | L∞ | 1.22×10-1 | 1.03×10-1 | 4.71×10-2 | 3.24×10-2 | 1.87×10-2 |
Rate | 0.24 | 1.13 | 0.54 | 0.79 | ||
L2 | 3.21×10-2 | 1.86×10-2 | 9.10×10-3 | 4.78×10-3 | 2.40×10-3 | |
Rate | 0.79 | 1.03 | 0.93 | 1.00 | ||
Taylor | L∞ | 1.98×10-1 | 7.52×10-2 | 3.01×10-2 | 1.69×10-2 | 7.60×10-3 |
Rate | 1.39 | 1.32 | 0.83 | 1.15 | ||
L2 | 5.64×10-2 | 1.54×10-2 | 4.11×10-3 | 1.27×10-3 | 3.91×10-4 | |
Rate | 1.88 | 1.90 | 1.70 | 1.69 | ||
VOC-Y | L∞ | 1.27×10-1 | 4.43×10-2 | 1.09×10-2 | 4.77×10-3 | 4.78×10-3 |
Rate | 1.52 | 2.03 | 1.19 | 0.00 | ||
L2 | 3.48×10-2 | 9.17×10-3 | 2.31×10-3 | 5.77×10-4 | 1.55×10-4 | |
Rate | 1.92 | 1.99 | 2.00 | 1.90 |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
DOI |
6 |
DOI |
7 |
DOI |
8 |
DOI |
9 |
DOI |
10 |
|
11 |
DOI |
12 |
DOI |
13 |
DOI |
14 |
DOI |
15 |
DOI |
16 |
DOI |
17 |
DOI |
18 |
DOI |
19 |
|
20 |
|
21 |
DOI |
22 |
EYMARD R, GALLOIIET T, HERBIN R. Finite volume methods[M]//CIARLET P G, LIONS J L, eds. Handbook of numerical analysis Vol. Ⅶ, North-Holland, 2000.
|
[1] | Shuting FENG, Houping DAI, Tongzheng SONG. Lattice Boltzmann Method for Two-dimensional Fractional Reaction-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2022, 39(6): 666-676. |
[2] | Xiaoyan HU, Zhengfeng FAN. An Efficient Parallel Algorithm on Multi-block Structure Meshes for Radiation Diffusion in Inertial Confinement Fusion Implosion [J]. Chinese Journal of Computational Physics, 2022, 39(3): 277-285. |
[3] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[4] | XU Jinjing, YUAN Guangwei. Vertex Interpolation Methods for Nine-point Scheme on Multi-flow-tube Meshes [J]. Chinese Journal of Computational Physics, 2021, 38(2): 153-164. |
[5] | ZHAO Fei, SHENG Zhiqiang, YUAN Guangwei. A Positivity-preserving Finite Volume Scheme Based on Second-order Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 379-392. |
[6] | ZHANG Longhui, YOU Changfu. A Fictitious Domain Method Based on Finite Volume Scheme for Particulate Flows [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 291-297. |
[7] | YIN Liang, YANG Chao, MA Shizhuang. Parallel Numerical Simulations of Thermal Convection in the Earth's Outer Core Based on Domain Decomposition and Multigrid [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 1-14. |
[8] | ZHAO Fengxiang, PAN Liang, WANG Shuanghu. Weighted Essentially Non-oscillatory Schemes on Unstructured Quadrilateral Meshes [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(5): 525-534. |
[9] | SUN Tingting, HAN Saisai, XU Mingtian. A Modified Finite Integration Method for Convection-Diffusion-Reaction Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(3): 269-274. |
[10] | ZHU Xiaogang, NIE Yufeng, WANG Jungang, YUAN Zhanbin. A Characteristic Finite Element Method for Fractional Convection-Diffusion Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 417-424. |
[11] | GUO Shaodong, ZHANG Mingyu, ZHOU Haibing, XIONG Jun, ZHANG Shudao. Solving Diffusion Equation on Three-Dimensional Non-Conformal Mesh [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(1): 19-28. |
[12] | LV Guixia, SUN Shunkai. A Finite Directional Difference Meshless Method for Diffusion Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(6): 649-661. |
[13] | SHU Shi, YUE Xiaoqiang, ZHOU Zhiyang, XU Xiaowen. Approximation and Two-level Algorithm of Finite Volume Schemes for Diffusion Equations with Structured AMR [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(4): 390-402. |
[14] | DENG Zhihong, SUN Yuliang, LI Fu, Rizwan-uddin. Modified Nodal Expansion Method for Convection-diffusion Equation in Cylindrical Geometry [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(4): 475-482. |
[15] | ZENG Fanhai, LI Changpin. High-order Finite Difference Methods for Time-fractional Subdiffusion Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(4): 491-500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.