1 |
BRENNER D . Computed tomography-an increasing source of radiation exposure[J]. The New England Journal of Medicine, 2007, 357 (22): 2277- 2284.
DOI
|
2 |
MCCOLLOUGH C , BRUESEWITZ M , KOFLER J . CT dose reduction and dose management tools: Overview of available options[J]. Radiographics, 2006, 26 (2): 503- 512.
DOI
|
3 |
PARCERO E , FLORES L , et al. Impact of view reduction in CT on radiation dose for patients[J]. Radiation Physics and Chemistry, 2017, 137 (5): 173- 175.
|
4 |
LI J , PENG H , ZHANG G , et al. Theoretical study of X-ray laser holography[J]. Chinese Journal of Computational Physics, 1997, (Z1): 40- 42.
|
5 |
LIU Z , M Y . Monte Carlo simulation of reverse nuclear explosion equivalent from X-ray imaging[J]. Chinese Journal of Computational Physics, 2010, 27 (1): 15- 22.
|
6 |
BULS N , VAN G G , VAN C T , et al. Contrast agent and radiation dose reduction in abdominal CT by a combination of low tube voltage and advanced image reconstruction algorithms[J]. European Radiology, 2014, 25 (4): 1023- 1031.
|
7 |
SIDKY E Y , KAO C M , PAN X . Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-ray Science and Technology, 2009, 14 (2): 119- 139.
|
8 |
LOUIS A K , RIEDER A . Incomplete data problems in X-ray computerized tomography[J]. Numerische Mathematik, 1998, 56 (4): 371- 383.
|
9 |
YAN X , YANG J , YANG Y . Fast filtered back projection algorithm in image reconstruction of Compton camera[J]. Chinese Journal of Computational Physics, 2020, 37 (2): 153- 162.
|
10 |
GORDON R , BENDER R , HERMAN G T . Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Theoretical Biology, 1970, 29 (3): 471- 481.
DOI
|
11 |
ANDERS A H . Algebraic reconstruction in CT from limited views[J]. IEEE Transactions on Medical Imaging, 1989, 8 (1): 50- 55.
DOI
|
12 |
CANDES E J , ROMBERG J , TAO T . Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52 (2): 489- 509.
DOI
|
13 |
TIKHONOV A N , ARSENIN V Y . Solutions of ill-posed problems[J]. Mathematics of Computation, 1977, 32 (144): 491- 491.
|
14 |
RUDIN L I , OSHER S , FATATEMI E . Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60 (4): 259- 268.
|
15 |
SIDKY E Y , PAN X . Image reconstruction in circular cone-beam computed tomography by constrained total-variation minimization[J]. Physics in Medicine and Biology, 2013, 53 (17): 4777- 4807.
|
16 |
BREDIES K , KUNISCH K , POCK T . Total generalized variation[J]. Siam Journal on Imagingences, 2010, 3 (3): 492- 526.
DOI
|
17 |
TIAN Z , JIA X , YUAN K , et al. Low-dose CT reconstruction via edge-preserving total variation regularization[J]. Physics in Medicine and Biology, 2011, 56 (18): 5949- 5967.
DOI
|
18 |
KIM H , CHEN J , WANG A , et al. Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction[J]. Physics in Medicine and Biology, 2016, 61 (18): 6878- 6891.
DOI
|
19 |
CHEN Z , JIN X , LI L , et al. A limited-angle CT reconstruction method based on anisotropic TV minimization[J]. Physics in Medicine and Biology, 2013, 58 (7): 2119- 2141.
DOI
|
20 |
LIU Y , MA J , FAN Y , et al. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction[J]. Physics in Medicine & Biology, 2012, 57 (23): 7923- 7956.
|
21 |
GUO Y , ZENG L , WANG C , et al. Image reconstruction model for the exterior problem of computed tomography based on weighted directional total variation[J]. Applied Mathematical Modelling, 2017, 52 (12): 358- 377.
|
22 |
TEAGUE M R . Image analysis via the general theory of moments[J]. JOSA, 1980, 70 (8): 920- 930.
DOI
|